首页> 美国卫生研究院文献>Plants >Plant Cell Walls Tackling Climate Change: Biotechnological Strategies to Improve Crop Adaptations and Photosynthesis in Response to Global Warming
【2h】

Plant Cell Walls Tackling Climate Change: Biotechnological Strategies to Improve Crop Adaptations and Photosynthesis in Response to Global Warming

机译:植物细胞壁应对气候变化:应对全球气候变暖提高作物适应性和光合作用的生物技术战略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Plant cell wall (CW) is a complex and intricate structure that performs several functions throughout the plant life cycle. The CW of plants is critical to the maintenance of cells’ structural integrity by resisting internal hydrostatic pressures, providing flexibility to support cell division and expansion during tissue differentiation, and acting as an environmental barrier that protects the cells in response to abiotic stress. Plant CW, comprised primarily of polysaccharides, represents the largest sink for photosynthetically fixed carbon, both in plants and in the biosphere. The CW structure is highly varied, not only between plant species but also among different organs, tissues, and cell types in the same organism. During the developmental processes, the main CW components, i.e., cellulose, pectins, hemicelluloses, and different types of CW-glycoproteins, interact constantly with each other and with the environment to maintain cell homeostasis. Differentiation processes are altered by positional effect and are also tightly linked to environmental changes, affecting CW both at the molecular and biochemical levels. The negative effect of climate change on the environment is multifaceted, from high temperatures, altered concentrations of greenhouse gases such as increasing CO in the atmosphere, soil salinity, and drought, to increasing frequency of extreme weather events taking place concomitantly, therefore, climate change affects crop productivity in multiple ways. Rising CO concentration in the atmosphere is expected to increase photosynthetic rates, especially at high temperatures and under water-limited conditions. This review aims to synthesize current knowledge regarding the effects of climate change on CW biogenesis and modification. We discuss specific cases in crops of interest carrying cell wall modifications that enhance tolerance to climate change-related stresses; from cereals such as rice, wheat, barley, or maize to dicots of interest such as brassica oilseed, cotton, soybean, tomato, or potato. This information could be used for the rational design of genetic engineering traits that aim to increase the stress tolerance in key crops. Future growing conditions expose plants to variable and extreme climate change factors, which negatively impact global agriculture, and therefore further research in this area is critical.
机译:植物细胞壁(CW)是一个复杂而复杂的结构,在整个植物生命周期中都执行多种功能。植物的CW通过抵抗内部静水压力,在组织分化过程中提供灵活性来支持细胞分裂和扩增,并作为保护非生物胁迫响应中保护细胞的环境屏障,对于维持细胞的结构完整性至关重要。无论是在植物中还是在生物圈中,主要由多糖组成的植物连续波代表了光合作用固定碳的最大汇。 CW结构不仅在植物物种之间而且在同一生物体的不同器官,组织和细胞类型之间都高度变化。在发育过程中,主要的CW成分,即纤维素,果胶,半纤维素和不同类型的CW-糖蛋白,相互之间以及与环境之间不断相互作用,以维持细胞稳态。分化过程会因位置效应而改变,并且也与环境变化紧密相关,从而在分子和生化水平上都影响化学反应。气候变化对环境的负面影响是多方面的,从高温,温室气体浓度的变化(例如大气中一氧化碳增加,土壤盐分和干旱)到极端天气事件的发生频率随之增加,因此,气候变化以多种方式影响农作物的生产力。预计大气中一氧化碳浓度的升高将提高光合速率,尤其是在高温和缺水条件下。这篇综述旨在综合有关气候变化对连续波生物发生和改变的影响的当前知识。我们讨论了感兴趣的作物中带有细胞壁修饰的特定案例,这些修饰增强了对气候变化相关胁迫的耐受性。从谷物,例如大米,小麦,大麦或玉米,到感兴趣的双子叶植物,例如芸苔油籽,棉花,大豆,番茄或马铃薯。该信息可用于合理设计基因工程性状,以期提高关键农作物的抗逆性。未来的生长条件使植物面临可变的和极端的气候变化因素,这会对全球农业产生负面影响,因此在这一领域的进一步研究至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号