首页> 美国卫生研究院文献>Micromachines >The Effects of Cold Arm Width and Metal Deposition on the Performance of a U-Beam Electrothermal MEMS Microgripper for Biomedical Applications
【2h】

The Effects of Cold Arm Width and Metal Deposition on the Performance of a U-Beam Electrothermal MEMS Microgripper for Biomedical Applications

机译:冷臂宽度和金属沉积对生物医学应用U型束电热MEMS微夹钳性能的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Microelectromechanical systems (MEMS) have established themselves within various fields dominated by high-precision micromanipulation, with the most distinguished sectors being the microassembly, micromanufacturing and biomedical ones. This paper presents a horizontal electrothermally actuated ‘hot and cold arm’ microgripper design to be used for the deformability study of human red blood cells (RBCs). In this study, the width and layer composition of the cold arm are varied to investigate the effects of dimensional and material variation of the cold arm on the resulting temperature distribution, and ultimately on the achieved lateral displacement at the microgripper arm tips. The cold arm widths investigated are 14 μm, 30 μm, 55 μm, 70 μm and 100 μm. A gold layer with a thin chromium adhesion promoter layer is deposited on the top surface of each of these cold arms to study its effect on the performance of the microgripper. The resultant ten microgripper design variants are fabricated using a commercially available MEMS fabrication technology known as a silicon-on-insulator multi-user MEMS process (SOIMUMPs)™. This process results in an overhanging 25 μm thick single crystal silicon microgripper structure having a low aspect ratio (width:thickness) value compared to surface micromachined structures where structural thicknesses are of the order of 2 μm. Finite element analysis was used to numerically model the microgripper structures and coupled electrothermomechanical simulations were implemented in CoventorWare®. The numerical simulations took into account the temperature dependency of the coefficient of thermal expansion, the thermal conductivity and the electrical conductivity properties in order to achieve more reliable results. The fabricated microgrippers were actuated under atmospheric pressure and the experimental results achieved through optical microscopy studies conformed with those predicted by the numerical models. The gap opening and the temperature rise at the cell gripping zone were also compared for the different microgripper structures in this work, with the aim of identifying an optimal microgripper design for the deformability characterisation of RBCs.
机译:微机电系统(MEMS)已在高精度微操纵为主的各个领域中确立了自己的地位,其中最杰出的领域是微组装,微制造和生物医学领域。本文介绍了一种水平电热驱动的“冷热臂”微型夹具,该设计将用于人类红细胞(RBC)的可变形性研究。在这项研究中,改变了冷臂的宽度和层组成,以研究冷臂的尺寸和材料变化对所得温度分布的影响,并最终对在微型夹具臂尖端获得的横向位移产生影响。研究的冷臂宽度为14个 μ m,30个 μ m,55个 μ m,其中70个 μ m和100个 μ m。在每个冷臂的顶表面上沉积一层具有薄的铬附着力促进剂层的金层,以研究其对微夹钳性能的影响。使用一种称为绝缘体上硅多用户MEMS工艺(SOIMUMPs)™的商业MEMS制造技术,可以制造出十种微型夹具设计变体。此过程导致悬垂的25个 μ m厚的单晶硅微抓取器结构,与表面微加工结构相比,该结构的纵横比(宽度:厚度)值低,其中结构厚度约为2 <数学xmlns:mml =“ http://www.w3.org/1998/Math/MathML” id =“ mm7” overflow =“ scroll”> μ m。有限元分析被用来对微夹持器的结构进行数值建模,并且在CoventorWare ® 。数值模拟考虑了热膨胀系数,热导率和电导率特性对温度的依赖性,以便获得更可靠的结果。所制造的微型夹具在大气压下致动,并且通过光学显微镜研究获得的实验结果与数值模型所预测的结果相符。在这项工作中,还比较了不同夹持器结构的间隙开口和细胞夹持区的温升,目的是确定用于RBC变形特性的最佳夹持器设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号