首页> 美国卫生研究院文献>Materials >Influence of Prior Martensite on Bainite Transformation Microstructures and Mechanical Properties in Ultra-Fine Bainitic Steel
【2h】

Influence of Prior Martensite on Bainite Transformation Microstructures and Mechanical Properties in Ultra-Fine Bainitic Steel

机译:马氏体对超细贝氏体钢中贝氏体相变组织和力学性能的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A multiphase microstructure comprising of different volume fractions of prior martensite and ultra-fine bainite (bainitic ferrite and retained austenite) was obtained by quenching to certain temperatures, followed by isothermal bainitic transformation. The effect of the prior martensite transformation on the bainitic transformation behavior, microstructures, and mechanical properties were discussed. The results showed that the prior martensite accelerated the subsequent low-temperature bainite transformation, and the incubation period and completion time of the bainite reaction were significantly shortened. This phenomenon was attributed to the enhanced nucleation ratio caused by the introduced strain in austenite, due to the formation of prior martensite and a carbon partitioning between the prior martensite and retained austenite. Moreover, the prior martensite could influence the crystal growth direction of bainite ferrite, refine bainitic ferrite plates, and reduce the dimension of blocky retained austenite, all of which were responsible for improving the mechanical properties of the ultra-fine bainitic steel. When the content of the prior martensite reached 15%, the investigated steels had the best performance, which were 1800 MPa and 21% for the tensile strength and elongation, respectively. Unfortunately, the increased content of the prior martensite could lead to a worsening of the impact toughness.
机译:通过淬火到一定温度,然后进行等温贝氏体转变,获得了包含不同体积分数的先有马氏体和超细贝氏体(贝氏体铁素体和残余奥氏体)的多相组织。讨论了先验马氏体相变对贝氏体相变行为,微观结构和力学性能的影响。结果表明,原先的马氏体加速了随后的低温贝氏体转变,并显着缩短了贝氏体反应的保温时间和完成时间。该现象归因于由于在先奥氏体的形成以及在奥氏体与残留奥氏体之间的碳分配,奥氏体中引入的应变引起的成核率提高。而且,原始马氏体可以影响贝氏体铁素体的晶体生长方向,细化贝氏体铁素体板,并减小块状残余奥氏体的尺寸,所有这些都有助于改善超细贝氏体钢的力学性能。当原始马氏体的含量达到15%时,所研究的钢具有最佳性能,其抗拉强度和伸长率分别为1800 MPa和21%。不幸的是,先前马氏体含量的增加可能导致冲击韧性的恶化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号