首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Structural and Biochemical Elucidation of Mechanism for Decarboxylative Condensation of β-Keto Acid by Curcumin Synthase
【2h】

Structural and Biochemical Elucidation of Mechanism for Decarboxylative Condensation of β-Keto Acid by Curcumin Synthase

机译:姜黄素合酶对β-酮酸脱羧缩合机理的结构和生化解析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The typical reaction catalyzed by type III polyketide synthases (PKSs) is a decarboxylative condensation between acyl-CoA (starter substrate) and malonyl-CoA (extender substrate). In contrast, curcumin synthase 1 (CURS1), which catalyzes curcumin synthesis by condensing feruloyl-CoA with a diketide-CoA, uses a β-keto acid (which is derived from diketide-CoA) as an extender substrate. Here, we determined the crystal structure of CURS1 at 2.32 Å resolution. The overall structure of CURS1 was very similar to the reported structures of type III PKSs and exhibited the αβαβα fold. However, CURS1 had a unique hydrophobic cavity in the CoA-binding tunnel. Replacement of Gly-211 with Phe greatly reduced the enzyme activity. The crystal structure of the G211F mutant (at 2.5 Å resolution) revealed that the side chain of Phe-211 occupied the hydrophobic cavity. Biochemical studies demonstrated that CURS1 catalyzes the decarboxylative condensation of a β-keto acid using a mechanism identical to that for normal decarboxylative condensation of malonyl-CoA by typical type III PKSs. Furthermore, the extender substrate specificity of CURS1 suggested that hydrophobic interaction between CURS1 and a β-keto acid may be important for CURS1 to use an extender substrate lacking the CoA moiety. From these results and a modeling study on substrate binding, we concluded that the hydrophobic cavity is responsible for the hydrophobic interaction between CURS1 and a β-keto acid, and this hydrophobic interaction enables the β-keto acid moiety to access the catalytic center of CURS1 efficiently.
机译:由III型聚酮化合物合酶(PKSs)催化的典型反应是酰基CoA(起始底物)和丙二酰CoA(增量剂底物)之间的脱羧缩合。相反,姜黄素合酶1(CURS1)通过将阿魏酰-CoA与双酮-CoA缩合来催化姜黄素合成,它使用β-酮酸(衍生自双酮-CoA)作为增量剂底物。在这里,我们确定了2.32 1分辨率下CURS1的晶体结构。 CURS1的总体结构与报告的III型PKSs的结构非常相似,并表现出αβαβα折叠。但是,CURS1在CoA结合通道中具有独特的疏水腔。用Phe取代Gly-211大大降低了酶的活性。 G211F突变体的晶体结构(分辨率为2.5Å)显示Phe-211的侧链占据了疏水腔。生化研究表明,CURS1使用与典型的III型PKS进行丙二酰辅酶A正常脱羧缩合的机理相同的机制催化β-酮酸的脱羧缩合。此外,CURS1的补充剂底物特异性表明CURS1和β-酮酸之间的疏水相互作用对于CURS1使用缺少CoA部分的补充剂底物可能很重要。从这些结果和对底物结合的建模研究中,我们得出结论,疏水腔负责CURS1与β-酮酸之间的疏水相互作用,并且这种疏水相互作用使β-酮酸部分能够进入CURS1的催化中心有效率的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号