您现在的位置:首页>美国卫生研究院文献>Haematologica

期刊信息

  • 期刊名称:

    -

  • 刊频: Monthly, 1998-
  • NLM标题:
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<1/20>
4205条结果
  • 机译 干细胞因子:骨髓脂肪细胞与造血细胞之间的桥梁
    摘要:
  • 机译 Hepcidin法规的新潜在参与者
    摘要:
  • 机译 泛素化在髓样白血病中并不普遍
    摘要:
  • 机译 六支装的抗体打孔效果更好
    摘要:
  • 机译 血小板的秘密来世
    摘要:
  • 机译 镰状细胞疾病的新兴疾病改良疗法
    摘要:Sickle cell disease afflicts millions of people worldwide and approximately 100,000 Americans. Complications are myriad and arise as a result of complex pathological pathways ‘downstream’ to a point mutation in DNA, and include red blood cell membrane damage, inflammation, chronic hemolytic anemia with episodic vaso-occlusion, ischemia and pain, and ultimately risk of cumulative organ damage with reduced lifespan of affected individuals. The National Heart, Lung, and Blood Institute’s 2014 evidence-based guideline for sickle cell disease management states that additional research is needed before investigational curative therapies will be widely available to most patients with sickle cell disease. To date, sickle cell disease has been cured by hematopoietic stem cell transplantation in approximately 1,000 people, most of whom were children, and significantly ameliorated by gene therapy in a handful of subjects who have only limited follow-up thus far. During a timespan in which over 20 agents were approved for the treatment of cystic fibrosis by the Food and Drug Administration, similar approval was granted for only two drugs for sickle cell disease (hydroxyurea and L-glutamine) despite the higher prevalence of sickle cell disease. This trajectory appears to be changing, as the lack of multimodal agent therapy in sickle cell disease has spurred engagement among many in academia and industry who, in the last decade, have developed new drugs poised to prevent complications and alleviate suffering. Identified therapeutic strategies include fetal hemoglobin induction, inhibition of intracellular HbS polymerization, inhibition of oxidant stress and inflammation, and perturbation of the activation of the endothelium and other blood components (e.g. platelets, white blood cells, coagulation proteins) involved in the pathophysiology of sickle cell disease. In this article, we present a crash-course review of disease-modifying approaches (minus hematopoietic stem cell transplant and gene therapy) for patients with sickle cell disease currently, or recently, tested in clinical trials in the era following approval of hydroxyurea.
  • 机译 小分子靶向镰状细胞病的根源病理生理学
    摘要:The complex, frequently devastating, multi-organ pathophysiology of sickle cell disease has a single root cause: polymerization of deoxygenated sickle hemoglobin. A logical approach to disease modification is, therefore, to interdict this root cause. Ideally, such interdiction would utilize small molecules that are practical and accessible for worldwide application. Two types of such small molecule strategies are actively being evaluated in the clinic. The first strategy intends to shift red blood cell precursor hemoglobin manufacturing away from sickle hemoglobin and towards fetal hemoglobin, which inhibits sickle hemoglobin polymerization by a number of mechanisms. The second strategy intends to chemically modify sickle hemoglobin directly in order to inhibit its polymerization. Important lessons have been learnt from the pre-clinical and clinical evaluations to date. Open questions remain, but this review summarizes the valuable experience and knowledge already gained, which can guide ongoing and future efforts for molecular mechanism-based, practical and accessible disease modification of sickle cell disease.
  • 机译 骨髓脂肪组织来源的干细胞因子介导造血功能的代谢调节
    摘要:Hematopoiesis is dynamically regulated by metabolic cues in homeostatic and stressed conditions; however, the cellular and molecular mechanisms mediating the metabolic sensing and regulation remain largely obscure. Bone marrow adipose tissue remodels in various metabolic conditions and has been recently proposed as a niche for hematopoietic stem cells after irradiation. Here, we investigated the role of marrow adipose tissue-derived hematopoietic cytokine stem cell factor in unperturbed hematopoiesis by selectively ablating the Kitl gene from adipocytes and bone marrow stroma cells using Adipoq-Cre and Osx1-Cre, respectively. We found that both Adipoq-Kitl knockout (KO) and Osx1-Kitl KO mice diminished hematopoietic stem and progenitor cells and myeloid progenitors in the bone marrow and developed macrocytic anemia at the steady-state. The composition and differentiation of hematopoietic progenitor cells in the bone marrow dynamically responded to metabolic challenges including high fat diet, β3-adrenergic activation, thermoneutrality, and aging. However, such responses, particularly within the myeloid compartment, were largely impaired in Adipoq-Kitl KO mice. Our data demonstrate that marrow adipose tissue provides stem cell factor essentially for hematopoiesis both at the steady state and upon metabolic stresses.
  • 机译 MicroRNA-127-3p通过限制分化来控制鼠类造血干细胞的维持
    摘要:The balance between self-renewal and differentiation is crucial to ensure the homeostasis of the hematopoietic system, and is a hallmark of hematopoietic stem cells. However, the underlying molecular pathways, including the role of micro-RNA, are not completely understood. To assess the contribution of micro-RNA, we performed micro-RNA profiling of hematopoietic stem cells and their immediate downstream progeny multi-potent progenitors from wild-type control and Pbx1-conditional knockout mice, whose stem cells display a profound self-renewal defect. Unsupervised hierarchical cluster analysis separated stem cells from multi-potent progenitors, suggesting that micro-RNA might regulate the first transition step in the adult hematopoietic development. Notably, Pbx1-deficient and wild-type cells clustered separately, linking micro-RNAs to self-renewal impairment. Differential expression analysis of micro-RNA in the physiological stem cell-to-multi-potent progenitor transition and in Pbx1-deficient stem cells compared to control stem cells revealed miR-127-3p as the most differentially expressed. Furthermore, miR-127-3p was strongly stem cell-specific, being quickly down-regulated upon differentiation and not re-expressed further downstream in the bone marrow hematopoietic hierarchy. Inhibition of miR-127-3p function in Lineage-negative cells, achieved through a lentiviral-sponge vector, led to severe stem cell depletion, as assessed with serial transplantation assays. miR-127-3p-sponged stem cells displayed accelerated differentiation, which was uncoupled from proliferation, accounting for the observed stem cell reduction. miR-127-3p overexpression in Lineage-negative cells did not alter stem cell pool size, but gave rise to lymphopenia, likely due to lack of miR-127-3p physiological downregulation beyond the stem cell stage. Thus, tight regulation of miR-127-3p is crucial to preserve the self-renewing stem cell pool and homeostasis of the hematopoietic system.
  • 机译 二聚体铁螯合酶桥接血红素生物合成所需的结构定义的分子复合物中的ABCB7和ABCB10同二聚体
    摘要:Loss-of-function mutations in the ATP-binding cassette (ABC) transporter of the inner mitochondrial membrane, ABCB7, cause X-linked sideroblastic anemia with ataxia, a phenotype that remains largely unexplained by the proposed role of ABCB7 in exporting a special sulfur species for use in cytosolic iron-sulfur (Fe-S) cluster biogenesis. Here, we generated inducible ABCB7-knockdown cell lines to examine the time-dependent consequences of loss of ABCB7. We found that knockdown of ABCB7 led to significant loss of mitochondrial Fe-S proteins, which preceded the development of milder defects in cytosolic Fe-S enzymes. In erythroid cells, loss of ABCB7 altered cellular iron distribution and caused mitochondrial iron overload due to activation of iron regulatory proteins 1 and 2 in the cytosol and to upregulation of the mitochondrial iron importer, mitoferrin-1. Despite the exceptionally large amount of iron imported into mitochondria, erythroid cells lacking ABCB7 showed a profound hemoglobinization defect and underwent apoptosis triggered by oxidative stress. In ABCB7-depleted cells, defective heme biosynthesis resulted from translational repression of ALAS2 by iron regulatory proteins and from decreased stability of the terminal enzyme ferrochelatase. By combining chemical crosslinking, tandem mass spectrometry and mutational analyses, we characterized a complex formed of ferrochelatase, ABCB7 and ABCB10, and mapped the interfaces of interactions of its components. A dimeric ferrochelatase physically bridged ABCB7 and ABCB10 homodimers by binding near the nucleotide-binding domains of each ABC transporter. Our studies not only underscore the importance of ABCB7 for mitochondrial Fe-S biogenesis and iron homeostasis, but also provide the biochemical characterization of a multiprotein complex required for heme biosynthesis.
  • 机译 新的噻唑烷酮可减少遗传性血色素沉着症和β地中海贫血小鼠模型中的铁超载
    摘要:Genetic iron-overload disorders, mainly hereditary hemochromatosis and untransfused β-thalassemia, affect a large population worldwide. The primary etiology of iron overload in these diseases is insufficient production of hepcidin by the liver, leading to excessive intestinal iron absorption and iron efflux from macrophages. Hepcidin agonists would therefore be expected to ameliorate iron overload in hereditary hemochromatosis and β-thalassemia. In the current study, we screened our synthetic library of 210 thiazolidinone compounds and identified three thiazolidinone compounds, 93, 156 and 165, which stimulated hepatic hepcidin production. In a hemochromatosis mouse model with hemochromatosis deficiency, the three compounds prevented the development of iron overload and elicited iron redistribution from the liver to the spleen. Moreover, these compounds also greatly ameliorated iron overload and mitigated ineffective erythropoiesis in β-thalassemic mice. Compounds 93, 156 and 165 acted by promoting SMAD1/5/8 signaling through differentially repressing ERK1/2 phosphorylation and decreasing transmembrane protease serine 6 activity. Additionally, compounds 93, 156 and 165 targeted erythroid regulators to strengthen hepcidin expression. Therefore, our hepcidin agonists induced hepcidin expression synergistically through a direct action on hepatocytes via SMAD1/5/8 signaling and an indirect action via eythroid cells. By increasing hepcidin production, thiazolidinone compounds may provide a useful alternative for the treatment of iron-overload disorders.
  • 机译 同种异体造血细胞移植治疗骨髓纤维化后的长期结果
    摘要:Allogeneic hematopoietic stem cell transplant remains the only curative treatment for myelofibrosis. Most post-transplantation events occur during the first two years and hence we aimed to analyze the outcome of 2-year disease-free survivors. A total of 1055 patients with myelofibrosis transplanted between 1995 and 2014 and registered in the registry of the European Society for Blood and Marrow Transplantation were included. Survival was compared to the matched general population to determine excess mortality and the risk factors that are associated. In the 2-year survivors, disease-free survival was 64% (60-68%) and overall survival was 74% (71-78%) at ten years; results were better in younger individuals and in women. Excess mortality was 14% (8-21%) in patients aged <45 years and 33% (13-53%) in patients aged ≥65 years. The main cause of death was relapse of the primary disease. Graft-versus-host disease (GvHD) before two years decreased the risk of relapse. Multivariable analysis of excess mortality showed that age, male sex recipient, secondary myelofibrosis and no GvHD disease prior to the 2-year landmark increased the risk of excess mortality. This is the largest study to date analyzing long-term outcome in patients with myelofibrosis undergoing transplant. Overall it shows a good survival in patients alive and in remission at two years. However, the occurrence of late complications, including late relapses, infectious complications and secondary malignancies, highlights the importance of screening and monitoring of long-term survivors.
  • 机译 从头UBE2A突变是在慢性粒细胞白血病进展过程中反复获得的,并干扰了髓系分化途径
    摘要:Despite the advent of tyrosine kinase inhibitors, a proportion of chronic myeloid leukemia patients in chronic phase fail to respond to imatinib or to second-generation inhibitors and progress to blast crisis. Until now, improvements in the understanding of the molecular mechanisms responsible for chronic myeloid leukemia transformation from chronic phase to the aggressive blast crisis remain limited. Here we present a large parallel sequencing analysis of 10 blast crisis samples and of the corresponding autologous chronic phase controls that reveals, for the first time, recurrent mutations affecting the ubiquitin-conjugating enzyme E2A gene (UBE2A, formerly RAD6A). Additional analyses on a cohort of 24 blast crisis, 41 chronic phase as well as 40 acute myeloid leukemia and 38 atypical chronic myeloid leukemia patients at onset confirmed that UBE2A mutations are specifically acquired during chronic myeloid leukemia progression, with a frequency of 16.7% in advanced phases. In vitro studies show that the mutations here described cause a decrease in UBE2A activity, leading to an impairment of myeloid differentiation in chronic myeloid leukemia cells.
  • 机译 序贯治疗原发性难治性急性髓性白血病患者:德国和以色列经验的历史前瞻性分析
    摘要:Primary refractory acute myeloid leukemia (AML) is associated with a dismal prognosis. The FLAMSA-reduced intensity conditioning protocol (total body irradiation or treosulfan-based) has been described as an effective approach in patients with refractory leukemia undergoing allogeneic hematopoietic cell transplantation. A modified protocol (without amsacrine) has also recently been used. We retrospectively analyzed the transplantation characteristics and outcomes of all consecutive patients between the years 2003 and 2017 (n=51) diagnosed with primary refractory AML who underwent transplantation at the University of Cologne and the Tel Aviv Medical Center. Median age was 54 years and median follow up was 37 months. Median time to neutrophil and platelet engraftment was 13 (range, 8-19) and 13 (range, 7-30) days, respectively. None of the patients had primary graft failure. Incidences of grade 2-4 and grade 3-4 acute graft-versus-host disease (GvHD), overall and moderate-severe chronic GvHD were 50% (95%CI: 41-67%), 12% (95%CI: 3-25%), 61% (95%CI: 47-72%), and 42% (95%CI: 34-51%), respectively. Anti-thymocyte globulin administration was associated with lower incidence of acute GvHD (HR: 0.327; P=0.02). Non-relapse mortality at three months and three years were 6% and 16%, respectively. Relapse incidences were 6% and 29%, respectively. Overall survival rates at three months, three and five years were 90%, 61%, and 53%, respectively. Chronic GvHD disease was associated with a decreased mortality rate (HR: 0.397; P=0.045). We conclude that sequential therapy in patients with primary refractory acute myeloid leukemia is safe and provides a remarkable anti-leukemic effect with durable survival and should be considered for every patient with primary refractory disease.
  • 机译 糖皮质激素和selumetinib通过上调BIM在RAS途径突变的儿童急性淋巴细胞白血病中具有高度协同作用
    摘要:New drugs are needed for the treatment of relapsed acute lymphoblastic leukemia and preclinical evaluation of the MEK inhibitor, selumetinib, has shown that this drug has excellent activity in those leukemias with RAS pathway mutations. The proapoptotic protein, BIM is pivotal in the induction of cell death by both selumetinib and glucocorticoids, suggesting the potential for synergy. Thus, combination indices for dexamethasone and selumetinib were determined in RAS pathway-mutated acute lymphoblastic leukemia primagraft cells in vitro and were indicative of strong synergism (combination index <0.2; n=5). Associated pharmacodynamic assays were consistent with the hypothesis that the drug combination enhanced BIM upregulation over that achieved by a single drug alone. Dosing of dexamethasone and selumetinib singly and in combination in mice engrafted with primary-derived RAS pathway-mutated leukemia cells resulted in a marked reduction in spleen size which was significantly greater with the drug combination. Assessment of the central nervous system leukemia burden showed a significant reduction in the drug-treated mice, with no detectable leukemia in those treated with the drug combination. These data suggest that a selumetinib-dexamethasone combination may be highly effective in RAS pathway-mutated acute lymphoblastic leukemia. An international phase I/II clinical trial of dexamethasone and selumetinib (Seludex trial) is underway in children with multiply relapsed/refractory disease.
  • 机译 在AIEOP-BFM ALL 2009研究的诱导阶段,使用聚乙二醇化的天冬酰胺酶治疗的急性淋巴细胞白血病儿童的脑脊液中的天冬酰胺水平
    摘要:Asparagine levels in cerebrospinal fluid and serum asparaginase activity were monitored in children with acute lymphoblastic leukemia treated with pegylated-asparaginase. The drug was given intravenously at a dose of 2,500 IU/m2 on days 12 and 26. Serum and cerebrospinal fluid samples obtained on days 33 and 45 were analyzed centrally. Since physiological levels of asparagine in the cerebrospinal fluid of children and adolescents are 4-10 μmol/L, in this study asparagine depletion was considered complete when the concentration of asparagine was ≤0.2 μmol/L, i.e. below the lower limit of quantification of the assay used. Over 24 months 736 patients (AIEOP n=245, BFM n=491) and 903 cerebrospinal fluid samples (n=686 on day 33 and n=217 on day 45) were available for analysis. Data were analyzed separately for the AIEOP and BFM cohorts and yielded superimposable results. Independently of serum asparaginase activity levels, cerebrospinal fluid asparagine levels were significantly reduced during the investigated study phase but only 28% of analyzed samples showed complete asparagine depletion while relevant levels, ≥1 μmol/L, were still detectable in around 23% of them. Complete cerebrospinal fluid asparagine depletion was found in around 5-6% and 33-37% of samples at serum asparaginase activity levels <100 and ≥ 1,500 IU/L, respectively. In this study cerebrospinal fluid asparagine levels were reduced during pegylated-asparaginase treatment, but complete depletion was only observed in a minority of patients. No clear threshold of serum pegylated-asparaginase activity level resulting in complete cerebrospinal fluid asparagine depletion was identified. The consistency of the results found in the two independent data sets strengthen the observations of this study. Details of the treatment are available in the European Clinical Trials Database at .
  • 机译 能量代谢由慢性淋巴细胞白血病的遗传变异共同决定,并影响药物敏感性
    摘要:Chronic lymphocytic leukemia cells have an altered energy metabolism compared to normal B cells. While there is a growing understanding of the molecular heterogeneity of the disease, the extent of metabolic heterogeneity and its relation to molecular heterogeneity has not been systematically studied. Here, we assessed 11 bioenergetic features, primarily reflecting cell oxidative phosphorylation and glycolytic activity, in leukemic cells from 140 chronic lymphocytic leukemia patients using metabolic flux analysis. We examined these bioenergetic features for relationships with molecular profiles (including genetic aberrations, transcriptome and methylome profiles) of the tumors, their ex vivo responses to a panel of 63 compounds, and with clinical data. We observed that leukemic cells with mutated immunoglobulin variable heavy-chain show significantly lower glycolytic activity than cells with unmutated immunoglobulin variable heavy-chain. Accordingly, several key glycolytic genes (PFKP, PGAM1 and PGK1) were found to be down-regulated in samples harboring mutated immunoglobulin variable heavy-chain. In addition, 8q24 copy number gains, 8p12 deletions, 13q14 deletions and ATM mutations were identified as determinants of cellular respiration. The metabolic state of leukemic cells was associated with drug sensitivity; in particular, higher glycolytic activity was linked to increased resistance towards several drugs including rotenone, navitoclax, and orlistat. In addition, we found glycolytic capacity and glycolytic reserve to be predictors of overall survival (P<0.05) independently of established genetic predictors. Taken together, our study shows that heterogeneity in the energy metabolism of chronic lymphocytic leukemia cells is influenced by genetic variants and this could be therapeutically exploited in the selection of therapeutic strategies.
  • 机译 CD20和CD37抗体通过Fc介导的簇协同增效激活补体
    摘要:CD20 monoclonal antibody therapies have significantly improved the outlook for patients with B-cell malignancies. However, many patients acquire resistance, demonstrating the need for new and improved drugs. We previously demonstrated that the natural process of antibody hexamer formation on targeted cells allows for optimal induction of complement-dependent cytotoxicity. Complement-dependent cytotoxicity can be potentiated by introducing a single point mutation such as E430G in the IgG Fc domain that enhances intermolecular Fc-Fc interactions between cell-bound IgG molecules, thereby facilitating IgG hexamer formation. Antibodies specific for CD37, a target that is abundantly expressed on healthy and malignant B cells, are generally poor inducers of complement-dependent cytotoxicity. Here we demonstrate that introduction of the hexamerization-enhancing mutation E430G in CD37-specific antibodies facilitates highly potent complement-dependent cytotoxicity in chronic lymphocytic leukemia cells ex vivo. Strikingly, we observed that combinations of hexamerization-enhanced CD20 and CD37 antibodies cooperated in C1q binding and induced superior and synergistic complement-dependent cytotoxicity in patient-derived cancer cells compared to the single agents. Furthermore, CD20 and CD37 antibodies colocalized on the cell membrane, an effect that was potentiated by the hexamerization-enhancing mutation. Moreover, upon cell surface binding, CD20 and CD37 antibodies were shown to form mixed hexameric antibody complexes consisting of both antibodies each bound to their own cognate target, so-called hetero-hexamers. These findings provide novel insights into the mechanisms of synergy in antibody-mediated complement-dependent cytotoxicity and provide a rationale to explore Fc-engineering and antibody hetero-hexamerization as a tool to enhance the cooperativity and therapeutic efficacy of antibody combinations.
  • 机译 CD45表达可区分小鼠胚胎巨核细胞波
    摘要:Embryonic megakaryopoiesis starts in the yolk sac on gestational day 7.5 as part of the primitive wave of hematopoiesis, and it continues in the fetal liver when this organ is colonized by hematopoietic progenitors between day 9.5 and 10.5, as the definitive hematopoiesis wave. We characterized the precise phenotype of embryo megakaryocytes in the liver at gestational day 11.5, identifying them as CD41++CD45-CD9++CD61+MPL+CD42c+ tetraploid cells that express megakaryocyte-specific transcripts and display differential traits when compared to those present in the yolk sac at the same age. In contrast to megakaryocytes from adult bone marrow, embryo megakaryocytes are CD45 until day 13.5 of gestation, as are both the megakaryocyte progenitors and megakaryocyte/erythroid-committed progenitors. At gestational day 11.5, liver and yolk sac also contain CD41+CD45+ and CD41+CD45 cells. These populations, and that of CD41++CD45CD42c+ cells, isolated from liver, differentiate in culture into CD41++CD45CD42c+ proplatelet-bearing megakaryocytes. Also present at this time are CD41CD45++CD11b+ cells, which produce low numbers of CD41++CD45CD42c+ megakaryocytes in vitro, as do fetal liver cells expressing the macrophage-specific Csf receptor-1 (Csf1r/CD115) from MaFIA transgenic mice, which give rise poorly to CD41++CD45CD42c+ embryo megakaryocytes both in vivo and in vitro. In contrast, around 30% of adult megakaryocytes (CD41++CD45++CD9++CD42c+) from C57BL/6 and MaFIA mice express CD115. We propose that differential pathways operating in the mouse embryo liver at gestational day 11.5 beget CD41++CD45CD42c+ embryo megakaryocytes that can be produced from CD41+CD45 or from CD41+CD45+ cells, at difference from those from bone marrow.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号