class='head no_bottom_margin' id='sec1title'>Int'/> Structural and Mechanistic Analysis of the Slx1-Slx4 Endonuclease
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Structural and Mechanistic Analysis of the Slx1-Slx4 Endonuclease
【2h】

Structural and Mechanistic Analysis of the Slx1-Slx4 Endonuclease

机译:Slx1-Slx4核酸内切酶的结构和机理分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe human SLX1-SLX4 structure-selective endonuclease plays a key role in DNA repair, homologous recombination, replication fork restart, and telomere maintenance (). The genes encoding Saccharomyces cerevisiae Slx1 and Slx4 were discovered in a genetic screen for mutations that are synthetic lethal in the absence of the Sgs1 helicase, a protein that is important for genome stability (). Homology searches subsequently identified the SLX1 and SLX4 genes in higher eukaryotes (). Slx1 is an evolutionarily conserved protein that contains an N-terminal GIY-YIG nuclease domain (also called URI domain) and a C-terminal zinc-finger domain. GIY-YIG domains also are present in homing nucleases, the bacterial nucleotide excision-repair nuclease UvrC, and several type II restriction enzymes (). The mechanism of substrate binding and cleavage for GIY-YIG family members has been elucidated by crystallographic studies of protein-DNA complexes obtained for two restrictases, namely R.Eco29kl () and Hpy188I ().The Slx4 subunit of the Slx1-Slx4 nuclease is thought to provide a scaffold that coordinates the actions of a number of proteins involved in DNA processing (). For example, vertebrate SLX4 is a large, multi-domain protein that interacts with several DNA repair proteins (): (1) the N-terminal region of human SLX4 binds the MSH2-MSH3 mismatch-repair complex and XPF-ERCC1 nucleotide excision-repair enzyme; and (2) the C-terminal portion of SLX4 binds the telomeric proteins TRF2 and RAP1, the PLK1 kinase, and the MUS81-EME1 endonuclease. In all organisms studied to date, SLX1 binds to the extreme C-terminal region of SLX4, which contains an evolutionarily conserved helix-turn-helix motif. Interestingly, in vitro studies have shown that SLX4 stimulates the endonuclease activities of SLX1, MUS81-EME1, and XPF-ERCC1 (). The importance of SLX4 is demonstrated by the observation that biallelic mutations in SLX4 (also known as FANCP) are associated with the cancer-prone disorder Fanconi anemia ().Although the amino acid sequence of SLX4 is evolutionarily diverse, the C-terminal region of all SLX4 proteins contains a conserved C-terminal domain (CCD) that underpins the interaction with SLX1 and a DNA-binding SAP domain found in many DNA repair proteins (). In yeast, there are few other discernible domains, whereas SLX4 proteins from higher eukaryotes (e.g., worms, flies, and humans) contain one or two copies of a UBZ family zinc-finger domain known as UBZ4; the MEI9XPF interaction like region (MLR); and a Broad-complex, Tramtrack, and Bric-a-brac (BTB) domain ().The role of SLX1-SLX4 in DNA repair has been studied extensively (). Although deletion of Slx1 in yeast does not affect the response to DNA damage, it has been shown that Slx1-Slx4 plays a role in maintaining the integrity of ribosomal loci, which contain tandem repeats that frequently lead to replication fork arrest (). It is possible that Slx1-Slx4 is involved in the collapse of stalled forks and the resolution of recombination intermediates, such as Holliday junctions (HJs), after fork recapture (). In human cells, transient depletion of SLX4 leads to an increased sensitivity to alkylating and crosslinking agents, indicating the importance of SLX4 for the repair of DNA inter-strand crosslinks (ICLs) and protein-DNA adducts. Depletion of SLX4 also reduces the efficiency of double-strand break repair and leads to genome instability (href="#bib19" rid="bib19 bib32 bib35 bib41 bib42" class=" bibr popnode">Garner et al., 2013; Muñoz et al., 2009; Sarbajna et al., 2014; Svendsen et al., 2009; Wechsler et al., 2011). Collectively, these observations indicate that SLX1 and/or SLX4 have relatively well-conserved roles in processing DNA intermediates that arise at stalled or collapsed replication forks, particularly when cells are treated with DNA-damaging agents that interfere with normal replication fork progression.Purified S. cerevisiae Slx1-Slx4 cleaves various DNA substrates in vitro, including splayed-arm structures, model replication forks, 5′-flaps, and HJs (href="#bib18" rid="bib18" class=" bibr popnode">Fricke and Brill, 2003). For the 5′-flap substrates, the major cleavage site lies in the 5′ single-stranded arm at the junction between single- and double-stranded DNA. Whereas Slx1 alone possesses weak nuclease activity, the rate is stimulated approximately 500-fold by Slx4. Purified human SLX1-SLX4 exhibits related activities and cleaves 5′-flaps, 3′-flaps, replication forks, and HJs. Of particular interest, SLX1-SLX4 and MUS81-EME1 cooperate during HJ resolution, with SLX1-SLX4 performing the initial nick such that MUS81-EME1 can resolve the nicked HJ without substrate dissociation (href="#bib44" rid="bib44" class=" bibr popnode">Wyatt et al., 2013).Although there is a significant amount of functional information available for Slx1-Slx4 and its associated proteins, structural and mechanistic insights for this enzyme are lacking. Here we report the crystal structure of the Slx1 nuclease, obtained using Candida glabrata Slx1 (Cg-Slx1). The protein forms a compact structure with the GIY-YIG nuclease and RING-finger domains interacting with each other, and the structural arrangement is reinforced by a long α helix. We find that Cg-Slx1 forms a stable homodimer in the absence of Cg-Slx4. Importantly, the crystal structure of Cg-Slx1 in complex with Cg-Slx4CCD, together with biochemical analyses, demonstrate that Cg-Slx1 homodimerization is mutually exclusive with the formation of a Cg-Slx1-Slx4CCD heterodimer, revealing a likely regulatory mechanism for Slx1 endonuclease activity.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介人类SLX1-SLX4结构选择性核酸内切酶在DNA修复中起着关键作用重组,复制fork重新启动和端粒维护()。在基因筛选中发现了酿酒酵母Slx1和Slx4的编码基因,这些突变在没有Sgs1解旋酶的情况下是合成致死突变,而Sgs1解旋酶是一种对基因组稳定性至关重要的蛋白质。同源性搜索随后在高等真核生物中鉴定出SLX1和SLX4基因。 Slx1是一种进化保守的蛋白质,包含N端GIY-YIG核酸酶结构域(也称为URI域)和C端锌指结构域。 GIY-YIG域也存在于归巢核酸酶,细菌核苷酸切除修复核酸酶UvrC和几种II型限制酶中。通过对两种限制性酶R.Eco29kl()和Hpy188I()获得的蛋白质-DNA复合物的晶体学研究,阐明了GIY-YIG家族成员的底物结合和裂解机制.Slx1-Slx4核酸酶的Slx4亚基是被认为可以提供一种支架,该支架可以协调涉及DNA处理的多种蛋白质的作用()。例如,脊椎动物SLX4是一种大型的多结构域蛋白,可与几种DNA修复蛋白相互作用():(1)人SLX4的N端区域与MSH2-MSH3错配修复复合体和XPF-ERCC1核苷酸切除-修复酶(2)SLX4的C末端部分结合了端粒蛋白TRF2和RAP1,PLK1激酶和MUS81-EME1核酸内切酶。在迄今为止研究的所有生物中,SLX1结合至SLX4的C末端极端区域,该区域包含进化保守的螺旋-转-螺旋基序。有趣的是,体外研究表明SLX4刺激SLX1,MUS81-EME1和XPF-ERCC1的核酸内切酶活性。通过观察到SLX4的重要性证明了SLX4的双等位基因突变(也称为FANCP)与易患癌症的Fanconi贫血()有关.SLX4的氨基酸序列在进化上是多样的,但CX的C端区域所有SLX4蛋白都包含一个保守的C末端结构域(CCD),该结构支撑与SLX1的相互作用以及许多DNA修复蛋白中发现的DNA结合SAP结构域()。在酵母中,几乎没有其他可识别的结构域,而来自高等真核生物的SLX4蛋白(例如蠕虫,苍蝇和人)则包含一或两个拷贝的UBZ家族锌指结构域,即UBZ4; MEI9 XPF 交互区域(MLR);以及广泛复合体,Tramtrack和Bric-a-brac(BTB)域()。SLX1-SLX4在DNA修复中的作用已得到广泛研究()。尽管酵母中Slx1的缺失不影响对DNA损伤的反应,但已显示Slx1-Slx4在维持核糖体基因座完整性方面起作用,该基因座包含串联重复序列,经常导致复制叉停滞()。 Slx1-Slx4可能参与停滞的叉子的倒塌,以及在叉子被重新捕获后重组中间物(例如霍利迪结点(HJs))的分解。在人类细胞中,SLX4的短暂消耗导致对烷基化和交联剂的敏感性增加,这表明SLX4对于修复DNA链间交联(ICL)和蛋白质-DNA加合物的重要性。 SLX4的耗尽还会降低双链断裂修复的效率并导致基因组不稳定(href="#bib19" rid="bib19 bib32 bib35 bib41 bib42" class=" bibr popnode"> Garner等人,2013; Muñoz等,2009; Sarbajna等,2014; Svendsen等,2009; Wechsler等,2011 )。总而言之,这些观察结果表明SLX1和/或SLX4在处理停滞或塌陷的复制叉中产生的DNA中间体方面具有相对保守的作用,尤其是当细胞受到干扰正常复制叉的DNA破坏剂处理时。酿酒酵母Slx1-Slx4在体外裂解各种DNA底物,包括张开的臂结构,模型复制叉,5'襟翼和HJ(href="#bib18" rid="bib18" class=" bibr popnode"> Fricke和Brill,2003年)。对于5'-瓣底物,主要的切割位点位于单链和双链DNA之间的连接处的5'单链臂中。单独的Slx1具有弱的核酸酶活性,而Slx4的刺激速率约为500倍。纯化的人SLX1-SLX4表现出相关的活性并切割5'-襟翼,3'-襟翼,复制叉和HJ。特别令人感兴趣的是,SLX1-SLX4和MUS81-EME1在HJ解析期间合作,使用SLX1-SLX4执行初始切割,这样MUS81-EME1可以解决切割后的HJ,而不会发生底物解离(href="#bib44" rid="bib44" class=" bibr popnode"> Wyatt等人,2013,< / a>)。尽管有大量关于Slx1-Slx4及其相关蛋白的功能信息,但缺乏有关该酶的结构和机理方面的见识。在这里,我们报告了使用光滑念珠菌Slx1(Cg-Slx1)获得的Slx1核酸酶的晶体结构。该蛋白形成紧密的结构,其中GIY-YIG核酸酶和RING-指结构域彼此相互作用,并且长α螺旋增强了结构排列。我们发现Cg-Slx1在没有Cg-Slx4的情况下形成稳定的同型二聚体。重要的是,Cg-Slx1与Cg-Slx4 CCD 的复合晶体结构以及生化分析表明,Cg-Slx1均二聚与Cg-Slx1-Slx4 CCD 异二聚体,揭示了Slx1核酸内切酶活性的可能调控机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号