class='head no_bottom_margin' id='sec1title'>Int'/> Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis
【2h】

Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis

机译:Ascl1协调调节神经发生过程中的基因表达和染色质景观。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe generation of neurons in the developing central nervous system requires a number of precisely orchestrated steps, whereby proliferating neural progenitors become committed to the neuronal fate, exit cell cycle, and undergo a long and complex program of migration and differentiation (). Proneural transcription factors (TFs) of the bHLH family, such as Ascl1/Mash1, are the main regulators of neurogenesis in the mammalian brain, and gain and loss-of-function analyses have shown that they are both required and sufficient to promote neurogenesis (, ). Accordingly, while genetic ablation of proneural genes in mice results in neural developmental defects associated with reduced neurogenesis, overexpression of proneural factors in neural progenitors induces a full neuronal differentiation program (, , ). In addition to its pivotal role in development, Ascl1 has been extensively used in protocols to reprogram somatic cells, including fibroblasts, astrocytes, and pericytes, into induced neurons (, , ), renewing interest in understanding the neurogenic activity of this proneural factor.Previously, we characterized the transcriptional program of Ascl1 in the ventral telencephalic region of the embryonic mouse brain by combining gene expression profiling with chromatin immunoprecipitation (ChIP), followed by hybridization to promoter oligonucleotide arrays (ChIP-chip). This work resulted in the identification of a set of Ascl1 target genes with various biological roles at distinct stages of the differentiation program, raising intriguing questions concerning the molecular basis for such temporal pattern (, ). In addition, it led to the identification of a novel function for Ascl1 in maintaining cell proliferation, mediated by the direct activation of genes that promote cell cycle progression. This resulted in a model whereby this proneural factor sequentially promotes the proliferation and differentiation of progenitor cells along the neuronal lineage, reconciling the classical view of this proneural protein as a differentiation factor with the fact that it is mostly expressed in cycling progenitors. Moreover, a recent study has shown that these two opposing activities are associated with distinct modes of Ascl1 expression, with oscillating or sustained Ascl1 promoting proliferation or differentiation, respectively ().In spite of the significant progress made on the characterization of its transcriptional targets, little is still known about how Ascl1 regulates gene expression. In particular, the relationship between Ascl1 binding, regulation of the chromatin landscape, and gene transcription is poorly understood. It was recently shown that during neuronal reprogramming, Ascl1 can access its cognate sites in nucleosomal-DNA when ectopically expressed in fibroblasts, defining it as a pioneer TF (). However, it remains to be seen whether Ascl1 works as a pioneer factor in a neurogenic context and whether binding of Ascl1 results in alterations to the chromatin landscape at its target regions, as it has been shown for some, but not all, other pioneer TFs ().Mammalian neurogenesis is not a synchronized process at a cell population level and studies to investigate the mechanistic basis of Ascl1 function at a genome-wide scale are difficult to perform in the developing embryo or in the adult brain. An alternative is the use of adherent cultures of neural stem (NS) cell lines derived from embryonic stem cells or embryonic neural precursors (, href="#bib30" rid="bib30" class=" bibr popnode">Pollard et al., 2006). These cultures provide us with reliable models to study neurogenesis in culture, without the confounding effects of cellular heterogeneity, characteristic of other cellular models such as neurospheres. In proliferating culture conditions, endogenous Ascl1 regulates a progenitor program that functions to maintain cell proliferation (href="#bib13" rid="bib13" class=" bibr popnode">Castro et al., 2011), whereas overexpression of Ascl1 leads to efficient cell cycle exit and neuronal differentiation.Here we investigate how Ascl1 activity is restricted by and impacts the chromatin landscape, when driving neuronal differentiation. We combined expression profiling with genome-wide mapping of Ascl1 binding sites (ChIP-seq) (href="#bib28" rid="bib28" class=" bibr popnode">Park, 2009), and DNase I hypersensitivity sites (DNase-seq) (href="#bib34" rid="bib34" class=" bibr popnode">Song and Crawford, 2010), in a cellular model of neurogenesis driven by overexpressed Ascl1. We identify a large number of genes directly regulated by Ascl1 and characterize widespread changes in chromatin accessibility during differentiation. Ascl1 binding correlates with activation of gene transcription, targeting not only regions of accessible but also of closed chromatin. In addition, binding of Ascl1 to DNA precedes a local increase in chromatin accessibility at the regulatory regions of its target genes, providing the first direct link between Ascl1 regulation of gene expression and local changes in chromatin landscape.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介在发展中的中枢神经系统中神经元的产生需要许多精心设计的步骤,从而使增殖的神经祖细胞致力于神经元的命运,退出细胞周期,并经历漫长而复杂的迁移和分化程序()。 bHLH家族的前神经转录因子(TFs),例如Ascl1 / Mash1,是哺乳动物大脑中神经发生的主要调节剂,功能获得和丧失的分析表明它们既是促进神经发生所必需的又是充分的( ,)。因此,虽然小鼠前体基因的遗传消融导致与神经发生减少相关的神经发育缺陷,但神经祖细胞中前体因子的过表达诱导了完整的神经元分化程序(,)。除了其在发育中的关键作用外,Ascl1还广泛用于将包括成纤维细胞,星形胶质细胞和周细胞在内的体细胞重编程为诱导神经元(``'')的方案中,重新引起了人们对这种前神经因子的神经源性活动的兴趣。 ,我们通过将基因表达谱与染色质免疫沉淀(ChIP)相结合,然后与启动子寡核苷酸阵列(ChIP-chip)进行杂交,来表征胚胎小鼠大脑腹侧脑末端区域中Ascl1的转录程序。这项工作导致鉴定了在分化程序不同阶段具有多种生物学作用的一组Ascl1目标基因,从而引发了有关这种时间模式的分子基础的有趣问题(,)。此外,它还导致了Ascl1维持细胞增殖的新功能的鉴定,该功能由促进细胞周期进程的基因的直接激活介导。这产生了一个模型,其中该前体神经因子顺序地促进了沿神经元谱系的祖细胞的增殖和分化,这与这种前体神经蛋白作为分化因子的经典观点相一致,因为它主要在循环祖细胞中表达。此外,最近的一项研究表明,这两种相反的活性与Ascl1表达的不同模式有关,分别与振荡或持续的Ascl1促进增殖或分化有关()。尽管在转录靶标表征方面取得了重大进展,关于Ascl1如何调控基因表达的知之甚少。尤其是,人们对Ascl1结合,染色质景观调控和基因转录之间的关系了解甚少。最近显示,在神经元重编程期间,当Ascl1在成纤维细胞中异位表达时,可以访问其在核小体DNA中的同源位点,从而将其定义为先驱TF()。然而,正如一些(但不是全部)其他先驱TF所显示的那样,Ascl1是否在神经源性背景下起先驱因子作用,以及Ascl1的结合是否会导致其靶区域染色质景观的改变尚待观察。 ()。哺乳动物的神经发生在细胞群体水平上不是一个同步的过程,研究在全基因组范围内研究Ascl1功能的机制基础的研究难以在发育中的胚胎或成年大脑中进行。一种替代方法是使用源自胚胎干细胞或胚胎神经前体的神经干(NS)细胞系的贴壁培养(href="#bib30" rid="bib30" class=" bibr popnode"> Pollard等。 ,2006 )。这些文化为我们提供了研究文化中神经发生的可靠模型,而没有细胞异质性的混杂影响,而细胞异质性是其他细胞模型(如神经球)的特征。在增殖的培养条件下,内源性Ascl1调节着一个祖细胞程序,该程序起着维持细胞增殖的作用(href="#bib13" rid="bib13" class=" bibr popnode"> Castro等人,2011 ),然而,Ascl1的过表达导致有效的细胞周期退出和神经元分化。在这里,我们研究了在驱动神经元分化时,Ascl1的活性如何受到染色质分布的限制和影响。我们将表达谱分析与Ascl1结合位点(ChIP-seq)(href="#bib28" rid="bib28" class=" bibr popnode"> Park,2009 )和DNase的全基因组映射相结合I超敏部位(DNase-seq)(href="#bib34" rid="bib34" class=" bibr popnode"> Song和Crawford,2010年),在由过表达的Ascl1驱动的神经发生的细胞模型中。我们确定了直接由Ascl1调控的大量基因,并表征了分化过程中染色质可及性的广泛变化。 Ascl1绑定与基因转录的激活相关,不仅针对可及的区域,也针对封闭的染色质。此外,Asc1与DNA的结合在其目标基因的调控区域上的染色质可及性局部增加,从而提供了基因表达的Ascl1调控与染色质景观局部变化之间的直接联系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号