class='head no_bottom_margin' id='sec1title'>Int'/> The Architecture of the Anbu Complex Reflects an Evolutionary Intermediate at the Origin of the Proteasome System
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >The Architecture of the Anbu Complex Reflects an Evolutionary Intermediate at the Origin of the Proteasome System
【2h】

The Architecture of the Anbu Complex Reflects an Evolutionary Intermediate at the Origin of the Proteasome System

机译:Anbu建筑群的体系结构反映了蛋白酶体系统起源的进化中间产物

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe proteasome is a ubiquitous nano-machine for protein degradation in eukaryotes and archaea (). It is a ∼670 kDa barrel-shaped complex of four stacked rings (), each composed of seven identical (archaea) or distinct (eukaryotes) subunits. The outer rings consist of catalytically inactive α subunits, whereas the inner rings are composed of proteolytic β subunits. α and β subunits are similar in sequence and structure, and are thought to have emerged by the duplication of a proto-β subunit.The proteasome can act by itself as a 20S proteasome (), or its α subunits may interact with various regulators that affect its choice of substrates (, ). The proteasome's most prominent function, targeted protein degradation, requires interaction with hexameric unfoldases of the AAA+ (ATPase with diverse cellular functions) superfamily (), which can also act as chaperones on their own (). In recent years, experiments have also emphasized the significance of the proteasome's ATP-independent functions (), such as the degradation of oxidized proteins through interaction with PA28αβ () or the degradation of acetylated histones through interaction with PA200 ().The proteasome is absent from bacteria, barring some branches of Actinobacteria (, ) and Nitrospirae (). While one theory attributes the occurrence of the proteasome in actinobacteria to horizontal gene transfer (HGT) (), another argues that the original proteasome evolved in an ancestral actinobacterium, from where it was inherited by archaea and eukaryotes (). Both theories, however, assume (href="#bib12" rid="bib12" class=" bibr popnode">Bochtler et al., 1999) that the proteasome as such evolved from its simpler and widely distributed bacterial homolog HslV (heat shock locus V). This homolog, unlike the proteasome, is a homomeric assembly of just two stacked hexameric rings (href="#bib11" rid="bib11" class=" bibr popnode">Bochtler et al., 1997) and thus lacks the antechamber constituted by the α subunits. Despite this, HslV is similar to the proteasome in its ability to interact with an unfoldase of the AAA+ superfamily, HslU, which recognizes intrinsic features of misfolded proteins (href="#bib34" rid="bib34" class=" bibr popnode">Gur et al., 2011). HslU and proteasomal unfoldases, however, belong to different clades of AAA+ ATPases (href="#bib5" rid="bib5" class=" bibr popnode">Ammelburg et al., 2006) and use different interfaces for interaction with their respective proteolytic machinery (href="#bib68" rid="bib68" class=" bibr popnode">Sousa et al., 2000, href="#bib75" rid="bib75" class=" bibr popnode">Yu et al., 2010), suggesting that they were recruited independently. While several studies indicate that HslU is not always bound to HslV (href="#bib6" rid="bib6" class=" bibr popnode">Azim et al., 2005) and possesses chaperone-like activities on its own (href="#bib65" rid="bib65" class=" bibr popnode">Seong et al., 2000), HslV has not been shown to function in the cell on its own in an ATP-independent manner. Unlike the essential, constitutively expressed eukaryotic proteasome, the non-essential heat-shock-induced HslV complements a set of other unrelated self-compartmentalizing proteases, such as FtsH, Lon, and Clp, under stress conditions (href="#bib34" rid="bib34" class=" bibr popnode">Gur et al., 2011, href="#bib45" rid="bib45" class=" bibr popnode">Kanemori et al., 1997).In 2008, a novel bacterial β subunit homolog, termed Anbu (ancestral β subunit) was identified (href="#bib70" rid="bib70" class=" bibr popnode">Valas and Bourne, 2008). It was proposed that Anbu, not HslV, gave rise to the proteasome, and that this event took place in actinobacteria. This interpretation was, however, questioned as Anbu, unlike other self-compartmentalizing proteases, is not associated with an AAA+ ATPase on the genomic level, but frequently co-occurs in an operon with a transglutaminase, an ATP-grasp protein with putative peptide ligase function, and a unique α-helical protein, Alpha-E (href="#bib43" rid="bib43" class=" bibr popnode">Iyer et al., 2009, href="#bib70" rid="bib70" class=" bibr popnode">Valas and Bourne, 2008), hinting at a specific peptide-synthesis system in which Anbu would act as a peptidase (href="#bib43" rid="bib43" class=" bibr popnode">Iyer et al., 2009).In this paper, we study the molecular characteristics of Anbu and, based on bioinformatic analysis, its place in proteasomal evolution. We determined crystal structures of two Anbu proteins and could decipher the Anbu structure in solution via small-angle X-ray scattering (SAXS). We find that Anbu forms a dodecameric open-ring assembly that locally resembles the architecture of the self-compartmentalizing proteasome, but is not closed for steric reasons. Based on these findings, we draft a scenario in which the Anbu complex constitutes an evolutionary intermediate at the origin of the proteasome system.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介蛋白酶体是在真核生物和古细菌中降解蛋白质的普遍存在的纳米机器。它是一个670 kDa的桶形复合物,由四个堆叠的环()组成,每个环由七个相同的(古细菌)或不同的(真核生物)亚基组成。外环由非催化活性的α亚基组成,而内环由蛋白水解的β亚基组成。 α和β亚基在序列和结构上相似,被认为是由原β亚基的重复产生的。蛋白酶体本身可以充当20S蛋白酶体(),或者其α亚基可能与各种调节剂相互作用影响其对基材的选择(,)。蛋白酶体最突出的功能是有针对性的蛋白质降解,它需要与AAA +(具有多种细胞功能的ATPase)超家族的六聚体解折叠酶相互作用,该家族也可以自己作为伴侣蛋白。近年来,实验还强调了蛋白酶体不依赖ATP的功能()的重要性,例如通过与PA28αβ相互作用而氧化蛋白质降解()或通过与PA200相互作用而使乙酰化组蛋白降解()。细菌,不包括放线菌(,)和硝化螺旋菌()的某些分支。虽然有一种理论将蛋白酶体在放线菌中的发生归因于水平基因转移(HGT)(),但另一种观点认为原始蛋白酶体是在祖先放线菌中进化而来,并被古细菌和真核生物遗传。然而,两种理论都认为(href="#bib12" rid="bib12" class=" bibr popnode"> Bochtler et al。,1999 )认为蛋白酶体是从其简单和广泛分布演变而来的细菌同源物HslV(热休克基因座V)。与蛋白酶体不同,该同源物是仅两个堆叠的六聚环的同聚体组装体(href="#bib11" rid="bib11" class=" bibr popnode"> Bochtler et al。,1997 )和因此缺乏由α亚基构成的前室。尽管如此,HslV与蛋白酶体的相似之处在于它与AAA +超家族HslU的解折叠酶相互作用的能力,HslU识别错误折叠的蛋白质的固有特征(href =“#bib34” rid =“ bib34” class =“ bibr popnode “> Gur等人,2011 )。但是,HslU和蛋白酶体解折叠酶属于AAA + ATPase的不同进化枝(href="#bib5" rid="bib5" class=" bibr popnode"> Ammelburg et al。,2006 ),并且使用不同的接口与它们各自的蛋白水解机制相互作用(href="#bib68" rid="bib68" class=" bibr popnode">苏萨等人,2000 ,href =“#bib75” rid =“ bib75“ class =” bibr popnode“> Yu等人,2010 ),建议他们是独立招募的。虽然一些研究表明HslU并不总是与HslV结合(href="#bib6" rid="bib6" class=" bibr popnode"> Azim等人,2005 ),但具有类似伴侣分子的活性。 HslV本身并没有表现出(href="#bib65" rid="bib65" class=" bibr popnode"> Seong等人,2000 )。独立于ATP的方式。与必需的,组成型表达的真核蛋白酶体不同,非必需的热休克诱导的HslV可以在应激条件下补充FtsH,Lon和Clp等一系列其他不相关的自我隔离蛋白酶(href =“#bib34 “ rid =” bib34“ class =” bibr popnode“>古尔等人,2011 ,href="#bib45" rid="bib45" class=" bibr popnode"> Kanemori等人,1997 )。2008年,发现了一种新型细菌β亚基同源物,称为Anbu(祖先β亚基)(href="#bib70" rid="bib70" class=" bibr popnode"> Valas和Bourne, 2008 )。有人提出,Anbu而不是HslV产生了蛋白酶体,并且该事件发生在放线菌中。但是,这种解释受到质疑,因为与其他自我分隔蛋白酶不同,Anbu在基因组水平上与AAA + ATPase不相关,但经常与操纵子一起与转谷氨酰胺酶(一种ATP-抓蛋白与推定的肽连接酶)共存。功能和独特的α螺旋蛋白Alpha-E(href="#bib43" rid="bib43" class=" bibr popnode"> Iyer等人,2009 ,href =“ #bib70“ rid =” bib70“ class =” bibr popnode“> Vals and Bourne,2008 ),暗示了特定的肽合成系统,其中Anbu充当肽酶(href =”#bib43 “ rid =” bib43“ class =” bibr popnode“> Iyer等人,2009 )。在本文中,我们基于生物信息学分析研究了Anbu的分子特征,,它在蛋白酶体进化中的地位。我们确定了两种Anbu蛋白的晶体结构,并可以通过小角度X射线散射(SAXS)解密溶液中的Anbu结构。我们发现Anbu形成一个十二聚体的开环装配,该装配局部地类似于自分隔蛋白酶体的体系结构,但由于空间原因而未封闭。基于这些发现,我们提出了一种场景,其中Anbu复合物在蛋白酶体系统的起源处构成了进化的中间产物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号