首页> 美国卫生研究院文献>Elsevier Sponsored Documents >An Integrative Study of Protein-RNA Condensates Identifies Scaffolding RNAs and Reveals Players in Fragile X-Associated Tremor/Ataxia Syndrome
【2h】

An Integrative Study of Protein-RNA Condensates Identifies Scaffolding RNAs and Reveals Players in Fragile X-Associated Tremor/Ataxia Syndrome

机译:蛋白质-RNA缩合物的综合研究确定支架RNA并揭示了脆弱的X相关震颤/共济失调综合症的参与者。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionProteins and RNAs coalesce in large phase-separated condensates that are implicated in several cellular processes (, ).Among the most studied condensates are ribonucleoprotein (RNP) granules that assemble in liquid-like cellular compartments composed of RNA-binding proteins (RBPs) (, ) that are in dynamic exchange with the surrounding environment (). RNP granules, such as processing bodies and stress granules (SGs), are evolutionarily conserved from yeast to human (, , ) and contain constitutive protein components, such as G3BP1 (yeast: Nxt3), TIA1 (Pub1), and TIAR (Ngr1) (). Several granule-forming RBPs are prone to form amyloid aggregates upon amino acid mutations (, ) that induce a transition from a liquid droplet to a solid phase (). This observation has led to the proposal that a liquid-to-solid phase transition is a mechanism of cellular toxicity () in diseases, such as amyotrophic lateral sclerosis (ALS) () and myotonic dystrophy ().All the components of molecular complexes need to be physically close to each other to perform their functions. One way to achieve this, while keeping selectivity in a crowded cell, is to use platform or scaffold molecules that piece together components of a complex or a pathway. Indeed, RBPs are known to act as scaffolding elements promoting RNP assembly through protein-protein interactions (PPIs) (href="#bib3" rid="bib3" class=" bibr popnode">Banani et al., 2017); yet, protein-RNA interactions (PRIs) also play a role in the formation of condensates. Recent work based on G3BP1 pull-down indicates that 10% of the human transcripts can assemble into SGs (href="#bib33" rid="bib33" class=" bibr popnode">Khong et al., 2017). If distinct RNA species are present in the condensates, a fraction of them could be involved in mediating RBP recruitment. In this regard, we previously observed that different RNAs act as scaffolds for RNP complexes (href="#bib61" rid="bib61" class=" bibr popnode">Ribeiro et al., 2018), which indicates that specific transcripts might promote the formation of RNP condensates.Combining PPI and PRI networks revealed by enhanced cross-linking and immunoprecipitation (eCLIP) (href="#bib75" rid="bib75" class=" bibr popnode">Van Nostrand et al., 2016) and mass spectrometric analysis of SGs (href="#bib29" rid="bib29" class=" bibr popnode">Jain et al., 2016), we identified a class of transcripts that bind to a large number of proteins and, therefore, qualify as potential scaffolding elements. In agreement with recent literature reports, we found that UTRs have a particularly strong potential to bind proteins in RNP granules, especially when they contain specific homo-nucleotide repeats (href="#bib63" rid="bib63" class=" bibr popnode">Saha and Hyman, 2017). In support of this observation, several diseases, including myotonic dystrophy (MD) and a number of ataxias (spinocerebellar ataxia [SCA]), have been reported to be linked to expanded trinucleotide repeats that trigger the formation of intranuclear condensates in which proteins are sequestered and functionally impaired. Specifically, expanded RNA repeats lead to RNA-mediated condensate formation in DM1 (href="#bib49" rid="bib49" class=" bibr popnode">Mooers et al., 2005), SCA8 (href="#bib52" rid="bib52" class=" bibr popnode">Mutsuddi et al., 2004), and SCA10 (href="#bib79" rid="bib79" class=" bibr popnode">White et al., 2010).By understanding the characteristics of RNAs involved in RNP assembly, we aim to unveil the molecular details of specific human diseases. Indeed, the appearance of RNP condensates, often called inclusions or foci, is not only linked to ALS, Huntington’s disease, and MD but also other diseases, such as fragile X-associated tremor/ataxia syndrome (FXTAS) (href="#bib71" rid="bib71" class=" bibr popnode">Tassone et al., 2004, href="#bib66" rid="bib66" class=" bibr popnode">Sellier et al., 2017). The onset and development of FXTAS is currently explained by two main mechanisms (href="#bib6" rid="bib6" class=" bibr popnode">Botta-Orfila et al., 2016): (1) RNA-mediated recruitment of proteins attracted by CGG trinucleotide repeats in the 5′ UTR of fragile X mental retardation protein (FMR1) RNA and (2) aggregation of repeat-associated non-AUG (RAN) polyglycine peptides translated from the FMR1 5′ UTR (FMRpolyG) (href="#bib74" rid="bib74" class=" bibr popnode">Todd et al., 2013). Previous work indicates that FMR1 inclusions contain specific proteins, such as HNRNP A2/B1, MBNL1, LMNA, and INA (href="#bib27" rid="bib27" class=" bibr popnode">Iwahashi et al., 2006). Also, FMRpolyG peptides (href="#bib66" rid="bib66" class=" bibr popnode">Sellier et al., 2017) have been found in the inclusions, together with CUGBP1, KHDRBS1, and DGCR8 that are involved in splicing regulation and mRNA transport regulation of microRNA regulation (href="#bib64" rid="bib64" class=" bibr popnode">Sellier et al., 2010, href="#bib65" rid="bib65" class=" bibr popnode">Sellier et al., 2013). Although KHDRBS1 does not bind physically (href="#bib64" rid="bib64" class=" bibr popnode">Sellier et al., 2010), its protein partner DGCR8 interacts with CGG repeats (href="#bib65" rid="bib65" class=" bibr popnode">Sellier et al., 2013), indicating that sequestration is a process led by a pool of proteins that progressively attract other networks.Notably, CGG repeats contained in the FMR1 5′ UTR are of different lengths (the most common allele in Europe being of 30 repeats). At over 200 repeats, methylation and silencing of the FMR1 gene block FMRP protein expression (href="#bib74" rid="bib74" class=" bibr popnode">Todd et al., 2013). The premutation range (55–200 CGG repeats) is instead accompanied by appearance of foci that are the typical hallmark of FXTAS (href="#bib74" rid="bib74" class=" bibr popnode">Todd et al., 2013). These foci are highly dynamic and behave as RNP condensates that phase separate in the nucleus forming inclusions (href="#bib71" rid="bib71" class=" bibr popnode">Tassone et al., 2004). Although long lived, they rapidly dissolve upon tautomycin treatment, which indicates liquid-like behavior (href="#bib68" rid="bib68" class=" bibr popnode">Strack et al., 2013).The lability of FMR1 inclusions, which impedes their biochemical characterization (href="#bib47" rid="bib47" class=" bibr popnode">Mitchell et al., 2013, href="#bib41" rid="bib41" class=" bibr popnode">Marchese et al., 2016), complicates the identification of RBPs involved in FXTAS. As shown in previous studies of RNP networks (href="#bib14" rid="bib14" class=" bibr popnode">Cirillo et al., 2017, href="#bib42" rid="bib42" class=" bibr popnode">Marchese et al., 2017), computational methods can be exploited to identify key partners of RNA molecules. New contributions from other research areas are needed, especially because FXTAS pathological substrate is still under debate and there is still insufficient knowledge of targets for therapeutic intervention (href="#bib74" rid="bib74" class=" bibr popnode">Todd et al., 2013, href="#bib66" rid="bib66" class=" bibr popnode">Sellier et al., 2017). Here, we propose an integrative approach to identify new markers based on the properties of PRI networks and characteristics of scaffolding RNAs.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介蛋白质和RNA合并在大的相分离的冷凝物中,这些冷凝物涉及多个细胞过程(在研究最多的冷凝物中,核糖核蛋白(RNP)颗粒在由RNA结合蛋白(RBP)(,)组成的液体状细胞隔室中组装,并与周围环境动态交换。 RNP颗粒(例如加工体和应激颗粒(SGs​​))从酵母到人(,)在进化上是保守的,并且包含组成性蛋白成分,例如G3BP1(酵母:Nxt3),TIA1(Pub1)和TIAR(Ngr1) ()。几个形成颗粒的RBP在氨基酸突变(,)时易于形成淀粉样聚集体,从而引起从液滴到固相的转变()。这一观察结果提出了这样一个建议,即液相到固相转变是诸如肌萎缩性侧索硬化症(ALS)和强直性肌营养不良症()之类的疾病中细胞毒性()的机制。在身体上彼此靠近以执行其功能。实现此目标的一种方法是在拥挤的细胞中保持选择性,同时使用平台分子或支架分子,它们将复合物或途径的组成部分拼凑在一起。实际上,已知RBP可以通过蛋白质-蛋白质相互作用(PPI)来促进RNP装配(href="#bib3" rid="bib3" class=" bibr popnode"> Banani等人,2017 );然而,蛋白质-RNA相互作用(PRI)在凝结物的形成中也起着作用。根据G3BP1下拉列表进行的最新研究表明,有10%的人类成绩单可以组装成SG(href="#bib33" rid="bib33" class=" bibr popnode"> Khong等人,2017 )。如果冷凝物中存在不同的RNA种类,则其中的一部分可能参与介导RBP募集。在这方面,我们先前观察到不同的RNA充当RNP复合物的支架(href="#bib61" rid="bib61" class=" bibr popnode"> Ribeiro et al。,2018 )。表示特定的转录本可能促进RNP冷凝物的形成。结合增强的交联和免疫沉淀(eCLIP)显示的PPI和PRI网络(href="#bib75" rid="bib75" class=" bibr popnode">范Nostrand等,2016 )和SG的质谱分析(href="#bib29" rid="bib29" class=" bibr popnode"> Jain等,2016 ),我们鉴定出一类可与大量蛋白质结合的转录本,因此可作为潜在的支架元件。与最近的文献报道一致,我们发现UTR具有特别强的结合RNP颗粒中蛋白质的潜力,特别是当它们包含特定的同核苷酸重复序列时(href =“#bib63” rid =“ bib63” class =“ bibr popnode“>萨哈和海曼,2017年)。为了支持这一观察,据报道,包括强直性肌营养不良(MD)和许多共济失调(spinocerebellar共济失调(SCA))在内的几种疾病与扩大的三核苷酸重复序列有关,这些重复序列触发了形成螯合蛋白质的核内缩合物的形成。并且功能受损。具体而言,扩展的RNA重复序列导致DM1中的RNA介导的冷凝物形成(href="#bib49" rid="bib49" class=" bibr popnode"> Mooers et al。,2005 ),SCA8(< a href =“#bib52” rid =“ bib52” class =“ bibr popnode”> Mutsuddi et al。,2004 )和SCA10(href =“#bib79” rid =“ bib79” class =“ bibr popnode“> White等人,2010 )。通过了解RNP组装中涉及的RNA的特征,我们旨在揭示特定人类疾病的分子细节。确实,RNP冷凝物的出现,通常被称为夹杂物或病灶,不仅与ALS,亨廷顿舞蹈病和MD有关,而且与其他疾病有关,例如脆弱的X相关震颤/共济失调综合征(FXTAS)(href =“ #bib71“ rid =” bib71“ class =” bibr popnode“>塔桑(Tassone)等人,2004 ,href="#bib66" rid="bib66" class=" bibr popnode"> Sellier等。 ,2017 )。 FXTAS的发生和发展目前由两种主要机制来解释(href="#bib6" rid="bib6" class=" bibr popnode"> Botta-Orfila等,2016 ):(1 RNA介导的脆弱X智力低下蛋白(FMR1)RNA 5'UTR中CGG三核苷酸重复序列所吸引的蛋白质的募集和(2)从FMR1 5'翻译的重复相关非AUG(RAN)聚甘氨酸肽的聚集UTR(FMRpolyG)(href="#bib74" rid="bib74" class=" bibr popnode"> Todd等人,2013 )。先前的工作表明FMR1内含物包含特定蛋白质,例如HNRNP A2 / B1,MBNL1,LMNA和INA(href="#bib27" rid="bib27" class=" bibr popnode"> Iwahashi等。,2006 )。此外,在夹杂物中还发现了FMRpolyG肽(href="#bib66" rid="bib66" class=" bibr popnode"> Sellier et al。,2017 ),以及CUGBP1,KHDRBS1和涉及microRNA调控的剪接调控和mRNA转运调控的DGCR8(href="#bib64" rid="bib64" class=" bibr popnode"> Sellier等,2010 ,href = “#bib65” rid =“ bib65” class =“ bibr popnode”> Sellier等人,2013 )。尽管KHDRBS1没有物理结合(href="#bib64" rid="bib64" class=" bibr popnode"> Sellier等,2010 ),但其蛋白伴侣DGCR8与CGG重复序列相互作用(href =“#bib65” rid =“ bib65” class =“ bibr popnode”> Sellier等人,2013 ),表明封存是由逐渐吸引其他网络的蛋白质池引导的过程。 FMR1 5'UTR中包含的CGG重复序列的长度不同(欧洲最常见的等位基因为30个重复序列)。在超过200个重复中,FMR1基因的甲基化和沉默会阻止FMRP蛋白表达(href="#bib74" rid="bib74" class=" bibr popnode"> Todd等人,2013 )。相反,预突变范围(55-200个CGG重复)伴随着焦点的出现,而焦点是FXTAS的典型标志(href="#bib74" rid="bib74" class=" bibr popnode"> Todd等, 2013 )。这些焦点是高度动态的,并且表现为RNP冷凝物在核中相分离形成夹杂物(href="#bib71" rid="bib71" class=" bibr popnode"> Tassone等,2004 ) 。尽管寿命长,但它们在互变霉素治疗后迅速溶解,表明存在液体样行为(href="#bib68" rid="bib68" class=" bibr popnode"> Strack et al。,2013 )。 FMR1夹杂物的不稳定性阻碍了它们的生化特性(href="#bib47" rid="bib47" class=" bibr popnode"> Mitchell et al。,2013 ,href =“#bib41 “ rid =“ bib41” class =“ bibr popnode”> Marchese等人,2016 )使涉及FXTAS的RBP的识别变得复杂。如先前对RNP网络的研究所示(href="#bib14" rid="bib14" class=" bibr popnode"> Cirillo et al。,2017 ,href =“#bib42” rid = “ bib42” class =“ bibr popnode”> Marchese等人,2017 ),可以利用计算方法来识别RNA分子的关键伙伴。还需要其他研究领域的新贡献,特别是因为FXTAS病理底物仍在争论中,并且对治疗干预目标的认识仍然不足(href="#bib74" rid="bib74" class=" bibr popnode"> Todd等人,2013 ,href="#bib66" rid="bib66" class=" bibr popnode"> Sellier等人,2017 )。在这里,我们提出了一种基于PRI网络的特性和脚手架RNA的特征来识别新标记的整合方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号