首页> 美国卫生研究院文献>International Journal of Molecular Sciences >Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application
【2h】

Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application

机译:单细胞诱集微流生物芯片中流体动力学流动的数值分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Single-cell analysis has become the interest of a wide range of biological and biomedical engineering research. It could provide precise information on individual cells, leading to important knowledge regarding human diseases. To perform single-cell analysis, it is crucial to isolate the individual cells before further manipulation is carried out. Recently, microfluidic biochips have been widely used for cell trapping and single cell analysis, such as mechanical and electrical detection. This work focuses on developing a finite element simulation model of single-cell trapping system for any types of cells or particles based on the hydrodynamic flow resistance (Rh) manipulations in the main channel and trap channel to achieve successful trapping. Analysis is carried out using finite element ABAQUS-FEA™ software. A guideline to design and optimize single-cell trapping model is proposed and the example of a thorough optimization analysis is carried out using a yeast cell model. The results show the finite element model is able to trap a single cell inside the fluidic environment. Fluid’s velocity profile and streamline plots for successful and unsuccessful single yeast cell trapping are presented according to the hydrodynamic concept. The single-cell trapping model can be a significant important guideline in designing a new chip for biomedical applications.
机译:单细胞分析已成为广泛的生物学和生物医学工程研究的兴趣。它可以提供有关单个细胞的精确信息,从而获得有关人类疾病的重要知识。为了进行单细胞分析,至关重要的是在进行进一步操作之前分离单个细胞。近来,微流体生物芯片已广泛用于细胞捕获和单细胞分析,例如机械和电学检测。这项工作的重点是,根据主通道和捕集通道中的流体动力学阻力(Rh)操纵,为任何类型的细胞或颗粒开发单细胞捕集系统的有限元模拟模型,以实现成功的捕集。使用有限元ABAQUS-FEA™软件进行分析。提出了设计和优化单细胞捕获模型的指南,并使用酵母细胞模型进行了全面优化分析的示例。结果表明,有限元模型能够捕获流体环境中的单个单元。根据流体力学概念,给出了成功和失败的单个酵母细胞捕获的流体速度分布图和流线图。在设计用于生物医学应用的新芯片时,单细胞捕获模型可能是重要的重要指南。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号