首页> 美国卫生研究院文献>iScience >Printable Metal-Polymer Conductors for Highly Stretchable Bio-Devices
【2h】

Printable Metal-Polymer Conductors for Highly Stretchable Bio-Devices

机译:用于高度可拉伸生物设备的可印刷金属聚合物导体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionFusion of electronics with biology and medicine demands electronic devices that are supple, stretchable, and compatible with human tissues, such as the skin (, ) and the brain (, ), especially in the fields of health monitoring and disease treatment (, , ). Flexible circuits are currently realized by depositing a thin layer of metal like copper and gold on flexible substrates such as polyimide. To further endow such flexible circuits with stretchability, wavy or serpentine structures are designed to counteract deformations (, ). The stretchability of these strategies is limited (about 150%), and the fabrication processes of such structures are often complicated. Another approach is developing conductive materials that could bear large deformations such as carbon nanomaterials, silver inks, and liquid metals (LMs) (, , , , ). Most of these materials are hard to be patterned with microstructures in large scale. Among these materials, LMs, especially eutectic gallium indium alloy (EGaIn, melting point 15°C), stand out for their excellent performances of high conductivity and unequaled stretchability (). Besides, EGaIn is much less toxic (href="#bib18" rid="bib18" class=" bibr popnode">Lu et al., 2015) than other metals that may potentially be useful for these applications, such as mercury (also liquid at room temperature) or silver (its nanowires can withstand stretch). However, the huge surface tension (>400 mN/m) (href="#bib3" rid="bib3" class=" bibr popnode">Dickey, 2014) of LM impedes its direct patterning by using straightforward technologies such as stencil and ink-jet printing (href="#bib28" rid="bib28" class=" bibr popnode">Zheng et al., 2014, href="#bib27" rid="bib27" class=" bibr popnode">Wang et al., 2015), making its patterning limited to very few substrates that can be wetted by LMs. In addition, such strategies have high LM consumption (the thickness of the LM pattern is usually larger than 100 μm), which further limits their wider applications. Another common method, injecting the LM into microfluidic channels or hollow wires, can yield conductors with high stretchability (>1,000%). However, these methods cannot fabricate complex conductive patterns that require the microfluidic channels or hollow wires to be continuous from the beginning to end (href="#bib13" rid="bib13" class=" bibr popnode">Kubo et al., 2010, href="#bib29" rid="bib29" class=" bibr popnode">Zhu et al., 2013). By contrast, bottom-up approaches to fabricate LM into particles is a good way to minimize the surface tension. Some reported strategies usually deposit a layer of liquid metal particles (LMPs) (not conductive due to the oxide layer on the particles) on the surface of elastomers and use a marker to mechanically sinter LMPs (break the oxide layer to release the conductive LM) to obtain a desirable conductive pattern (href="#bib14" rid="bib14" class=" bibr popnode">Lin et al., 2015, href="#bib1" rid="bib1" class=" bibr popnode">Boley et al., 2015; href="#bib23" rid="bib23" class=" bibr popnode">Ren et al., 2016, href="#bib20" rid="bib20" class=" bibr popnode">Mohammed and Kramer, 2017). However, conductive patterns fabricated by these strategies cannot bear large deformations like stretching in practical applications, because stress in deformations will also sinter the LMPs in regions where conductive patterns are not desirable, causing short circuit in the electronics. Besides, using a marker to sinter the LMP to obtain electronics has low efficiency and low utilization of particles. These strategies using LMPs are not applicable to mass-manufacturing.Here, we report printable and mass-manufacturable metal-polymer conductors (MPCs) by fabricating LM into LMPs (liquid core-oxide shell structure), and embedding the patterned LMPs on the surface of polymers by casting and peeling off steps, instead of using a marker or a nozzle, to result in microstructured, conductive path. The theoretical calculation indicates that the stress on the particles during stripping is much larger than the yield stress of gallium oxide, causing the release of the LM to form conductive paths. We used screen printing or microfluidic patterning strategy to pattern any 2D MPC pattern on various substrates in different thicknesses with high resolution (15 μm), high efficiency, and low cost. The printable MPC is highly conductive (8 × 103 S/cm), robust, and stretchable, which can keep conductivity as high as 2,316 S/cm at a strain of 500%. Because MPC patterns allow exposed LMs on the surface of polymer substrates (instead of completely buried within polymers), electronic components could be easily mounted. We used the printable MPC for highly stretchable circuits, motion sensors, wearable glove keyboards, and electroporation of live cells because of its biocompatibility. This potentially widely applicable approach will greatly increase the stretchability of electronic devices and sharply decrease the production cost of printed electronics, which will significantly promote the development of wearable or implantable electronic devices.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介将电子技术与生物学和医学相融合要求电子设备柔软,可拉伸且兼容与人体组织,例如皮肤(,)和大脑(,)接触,特别是在健康监测和疾病治疗(,)领域。当前,通过在诸如聚酰亚胺的柔性基板上沉积诸如铜和金的金属薄层来实现柔性电路。为了进一步使这种柔性电路具有可拉伸性,设计了波浪形或蛇形结构来抵消变形(,)。这些策略的可拉伸性受到限制(约150%),并且此类结构的制造过程通常很复杂。另一种方法是开发可以承受较大变形的导电材料,例如碳纳米材料,银墨水和液态金属(LM)(“,,,”)。这些材料中的大多数很难通过微观结构进行大规模图案化。在这些材料中,LM尤其是共晶镓铟合金(EGaIn,熔点15°C)因其出色的高导电性和无与伦比的可拉伸性而脱颖而出。此外,与其他可能对这些应用潜在有用的金属相比,EGaIn的毒性要低得多(href="#bib18" rid="bib18" class=" bibr popnode"> Lu等人,2015 )。例如汞(在室温下也是液体)或银(其纳米线可以承受拉伸)。但是,LM的巨大表面张力(> 400 mN / m)(href="#bib3" rid="bib3" class=" bibr popnode">迪基,2014 )阻碍了其直接图案化简单的技术,例如模版和喷墨印刷(href="#bib28" rid="bib28" class=" bibr popnode"> Zheng等人,2014 ,href =“#bib27” rid =“ bib27” class =“ bibr popnode”> Wang等人,2015 ),使其图案仅限于极少数可以被LM润湿的基板。此外,此类策略具有较高的LM消耗(LM图案的厚度通常大于100μm),这进一步限制了它们的广泛应用。另一种常见的方法是将LM注入微流体通道或中空导线中,可以产生具有高拉伸性(> 1,000%)的导体。但是,这些方法无法制造复杂的导电图案,这些图案要求微流体通道或空心导线从头到尾都必须连续(href="#bib13" rid="bib13" class=" bibr popnode"> Kubo等。 ,2010 ,href="#bib29" rid="bib29" class=" bibr popnode"> Zhu等人,2013 )。相比之下,将LM制造成颗粒的自下而上的方法是最小化表面张力的好方法。一些已报道的策略通常在弹性体的表面上沉积一层液态金属颗粒(LMP)(由于颗粒上的氧化物层而不导电),并使用标记物机械烧结LMP(破坏氧化物层以释放导电性LM)。以获得理想的导电图案(href="#bib14" rid="bib14" class=" bibr popnode"> Lin et al。,2015 ,href =“#bib1” rid =“ bib1 “ class =” bibr popnode“> Boley等人,2015 ; href="#bib23" rid="bib23" class=" bibr popnode"> Ren等人,2016 , href="#bib20" rid="bib20" class=" bibr popnode">默罕默德和克莱默,2017年)。然而,通过这些策略制造的导电图案不能承受实际应用中的拉伸等大变形,因为变形中的应力还会在不需要导电图案的区域中烧结LMP,从而导致电子器件短路。此外,使用标记物烧结LMP以获得电子器件具有低效率和低颗粒利用。这些使用LMP的策略不适用于大规模生产。在这里,我们报道了通过将LM制成LMP(液态核心氧化物壳结构)并将图案化的LMP嵌入表面,从而可印刷和可大规模生产的金属聚合物导体(MPC)。通过浇铸和剥离步骤来形成聚合物,而不是使用标记器或喷嘴,以形成微结构化的导电路径。理论计算表明,汽提过程中颗粒上的应力远大于氧化镓的屈服应力,从而导致LM释放而形成导电路径。我们使用丝网印刷或微流体构图策略以高分辨率(15μm),高效率和低成本在不同厚度的各种基板上构图任何2D MPC图案。可打印的MPC具有高导电性(8×10 3 S / cm),坚固且可拉伸,可保持高达2的电导率500应变时为316 S / cm。由于MPC图案允许聚合物基板表面上暴露的LM(而不是完全掩埋在聚合物中),因此可以轻松地安装电子组件。由于其生物相容性,我们将可打印的MPC用于高度可拉伸的电路,运动传感器,可穿戴的手套式键盘以及活细胞的电穿孔。这种潜在广泛应用的方法将大大提高电子设备的可拉伸性,并大幅降低印刷电子产品的生产成本,这将大大促进可穿戴或可植入电子设备的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号