首页> 美国卫生研究院文献>iScience >Nanostructured Three-Dimensional Percolative Channels for Separation of Oil-in-Water Emulsions
【2h】

Nanostructured Three-Dimensional Percolative Channels for Separation of Oil-in-Water Emulsions

机译:分离水包油型乳液的纳米结构三维渗流通道

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionSeparation of oil from water has been an issue that has developed along with the development of modern technology (, ). For example, petroleum manufacturing process has aroused environmental concerns such as oil waste and water pollution (). Recent advancement of green technologies has also boosted the need of recovery of oil from water for domestic uses such as kitchen waste recycling (, ). It is known that by utilizing gravity (), centrifugal force (), electrochemical means (), or adsorption (), oil/water mixtures can be separated in a macro scale.However, those conventional methods often fail to work when it comes down to the micro scale, which is most often the case in practical applications (). To mitigate this, treatments such as chemical agents are often applied in demulsification technology (). To achieve high-efficiency separation of micron-sized oil droplets in water (i.e., oil-water emulsion), major challenges remain in the high porosity and superhydrophilic surface as concomitants of the material itself. Recently, emerging designs of oil-water emulsion filters, such as organic membranes () and surface-functionalized metal meshes (), have become popular in the field of oil/water separation research. Nano-arrays mimicking cacti surface are also reported to be candidates for the effective collection of micron-sized oil droplets from water (). Nevertheless, they either suffer from poor mechanical durability or from an impotent filtering efficiency. To date, a single reusable demulsificator that combines the merits of mechanical durability, high efficiency, and high throughput has been missing.Among the reported demulsificators, self-organized anodic TiO2 nanotubes (TNTs) vertically grown on non-planar titanium substrates have attracted tremendous interest because of the superb water wettability (, href="#bib41" rid="bib41" class=" bibr popnode">Xiang et al., 2017). For example, TNT-covered titanium meshes, wires, and tubes have been used not only in oil/water separation (href="#bib35" rid="bib35" class=" bibr popnode">Sun et al., 2014, href="#bib24" rid="bib24" class=" bibr popnode">Liao et al., 2012) but also in fields such as organic matter degradation (href="#bib24" rid="bib24" class=" bibr popnode">Liao et al., 2012), flexible solar cells (href="#bib40" rid="bib40" class=" bibr popnode">Wen et al., 2016), and Li-ion battery systems (href="#bib47" rid="bib47" class=" bibr popnode">Zhang et al., 2014). The growth mechanism of vertical TiO2 nanotube arrays (TNTAs) on titanium foams is yet elusive. The reported oil/water separation methods based on TNTAs are mostly limited to the outer surface modification on top of the titanium foams (href="#bib21" rid="bib21" class=" bibr popnode">Li et al., 2015c) and only with low porosity because of the poor oxidation kinetics condition in the micro-pores (href="#bib1" rid="bib1" class=" bibr popnode">Atencia and Beebe, 2005, href="#bib39" rid="bib39" class=" bibr popnode">Wei et al., 2000).In this work, we show that by developing a three-dimensional (3D) percolative anodization technique, high-porosity titanium framework with thickness reaching a few millimeters can be conformably decorated with superhydrophilic TNT vertical arrays. These 3D percolative superhydrophilic micro channels can serve as “highways” for water but prevent the transport of oil droplets (average size 10 μm, see href="#mmc1" rid="mmc1" class=" supplementary-material">Supplemental Information). It thus leads to a low-cost reusable oil/water separator with ultrahigh efficiency (>99.95%) and strong mechanical durability.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介将水与油分离已成为现代技术发展的一个问题技术(,)。例如,石油生产过程引起了环境方面的关注,例如废油和水污染()。绿色技术的最新发展也提高了从水中回收油用于家庭用途(例如厨余回收)的需求。众所周知,利用重力(),离心力(),电化学手段()或吸附()可以将油/水混合物进行宏观分离,但是这些传统方法通常在失效时不起作用到微尺度,这在实际应用中通常是最常见的情况()。为了减轻这种情况,通常在破乳技术中采用化学药剂等处理方法()。为了实现水中微米级油滴(即油水乳液)的高效分离,作为材料本身的伴随物,高孔隙率和超亲水表面仍然是主要挑战。近来,油水乳状液过滤器的新兴设计,例如有机膜()和表面功能化的金属网(),已在油水分离研究领域中流行。据报道,模仿仙人掌表面的纳米阵列也是从水中有效收集微米级油滴的候选对象。然而,它们要么遭受较差的机械耐久性,要么遭受无效的过滤效率。迄今为止,缺少一种具有机械耐用性,高效率和高产量优点的可重复使用的破乳剂。由于具有极好的水润湿性而引起人们的关注(,href="#bib41" rid="bib41" class=" bibr popnode"> Xiang et al。,2017 )。例如,TNT覆盖的钛网,金属丝和管子不仅用于油/水分离(href="#bib35" rid="bib35" class=" bibr popnode"> Sun et al。,2014 ,href="#bib24" rid="bib24" class=" bibr popnode">廖等人,2012 ),还涉及有机物降解等领域(href = “#bib24” rid =“ bib24” class =“ bibr popnode”>廖等人,2012 ),柔性太阳能电池(href =“#bib40” rid =“ bib40” class =“ bibr popnode “> Wen等人,2016 )和锂离子电池系统(href="#bib47" rid="bib47" class=" bibr popnode"> Zhang等人,2014 )。钛泡沫上垂直TiO2纳米管阵列(TNTA)的生长机理尚不清楚。已报道的基于TNTA的油/水分离方法主要限于钛泡沫塑料的外表面改性(href="#bib21" rid="bib21" class=" bibr popnode"> Li等, 2015c ),并且孔隙率低,因为微孔中的氧化动力学条件较差(href="#bib1" rid="bib1" class=" bibr popnode"> Atencia和Beebe,2005 < / a>,href="#bib39" rid="bib39" class=" bibr popnode"> Wei et al。,2000 )。在这项工作中,我们通过开发三维( 3D)渗滤阳极氧化技术,可以使用超亲水性TNT垂直阵列一致地装饰厚度达到几毫米的高孔隙度钛框架。这些3D渗滤性超亲水微通道可以用作水的“高速公路”,但可以防止油滴的运输(平均大小为10μm,请参见href="#mmc1" rid="mmc1" class="Supplementary-material">补充信息)。因此,这导致了一种低成本,可重复使用的油/水分离器,具有超高效率(> 99.95%)和强大的机械耐久性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号