class='head no_bottom_margin' id='sec1title'>Int'/> Particulate Matter Capturing via Naturally Dried ZIF-8/Graphene Aerogels under Harsh Conditions
首页> 美国卫生研究院文献>iScience >Particulate Matter Capturing via Naturally Dried ZIF-8/Graphene Aerogels under Harsh Conditions
【2h】

Particulate Matter Capturing via Naturally Dried ZIF-8/Graphene Aerogels under Harsh Conditions

机译:在恶劣条件下通过自然干燥的ZIF-8 /石墨烯气凝胶捕获颗粒物

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionHaze problem, mainly caused by particulate matter (PM)2.5 defined by an aerodynamic diameter of 2.5 μm or less, strongly influences human health in our daily life (, ). In 2013, 87% of the world population was living in regions that have surpassed the PM2.5 limit of 10 μg m−3, an air quality limit set by the World Health Organization (). Especially in countries like China, the average concentrations of PM2.5 reached 54.5 μg m−3, and 92% of the population has experienced over 120 h of exposure to unhealthy air during a 4-month period (). An analysis of the sources of PM2.5 pollution in China indicates that the primary particulate emission comes from traffic, coal or biomass burning, and dust, whereas the secondary origin is mainly from aerosol precursors from SOx, NOx, and volatile organic compounds (). PM2.5 seriously threatens human health because of its toxic component and the potential menace caused by its small size of penetration of human bronchi and lungs. Based on a report by the Global Burden of Disease, PM2.5 was a major predisposing factor for 2.9 million deaths in the 2013 (). Therefore highly efficient technology for rapid PM2.5 capture, particularly at the source of emission, is urgently needed.Previous strategies have been explored to tackle PM2.5 pollution particles, such as using commercially available air filters (thick fabric, active carbon, etc.), polar polymer nanofiber filters (, ), conductive silver nanowire filters (), and porous metal-organic frameworks (MOFs) as filters (, ). However, the filtration of conventional air filters is usually performed at a low initial concentration (<1,000 μg cm−3) and ambient conditions. For some specific applications, such as the filtration of vehicle exhaust and chimney exhaust, the flow rate and pressure of pollution gas are high under harsh conditions (e.g., high temperature, rapid flow rate, and large humidity). Some particles may not be effectively captured if only these conventional membranes are used. The robust air filters for the realization of both high removal efficiency and low pressure drop for highly concentrated PM under harsh conditions is still a big challenge (). Therefore it is desirable to design a 3D porous framework with evenly distributed and well-connected pores for efficient particle capture (, ). An ideal structure should be highly porous to minimize resistance to a high-rate flow gas and possess a large surface area to capture the particles.Graphene aerogels (GAs), which combine the chemical nature of the material with porous networks, meet the requirements mentioned above. They also exhibit high mass efficiency for separation and adsorption for oils, metal ions, and organic solvents (, href="#bib5" rid="bib5" class=" bibr popnode">Cong et al., 2012). Self-assembly, cross-linking, chemical vapor deposition (CVD), and 3D printing are common methods for the synthesis of GAs (href="#bib3" rid="bib3" class=" bibr popnode">Cao et al., 2011, href="#bib31" rid="bib31" class=" bibr popnode">Wei et al., 2013, href="#bib34" rid="bib34" class=" bibr popnode">Xu et al., 2010, href="#bib42" rid="bib42" class=" bibr popnode">Zhu et al., 2015). Most of these approaches with the exception of CVD involve freeze- or supercritical drying, leading to high cost and low production yield. Compared with these approaches, a natural drying technique is more practical owing to its productivity and good scalability (href="#bib22" rid="bib22" class=" bibr popnode">Li et al., 2016, href="#bib33" rid="bib33" class=" bibr popnode">Xu et al., 2016, href="#bib35" rid="bib35" class=" bibr popnode">Yang et al., 2015). To maximize the removal efficiency using GAs, high-specific-surface-area adsorbents with micro- or nanoscale porosity could be decorated on the GA networks. In this regard, MOFs are ideal candidates as they are ultraporous materials with secondary building units (metal clusters, or known as metal-containing nodes) and organic linkers (href="#bib8" rid="bib8" class=" bibr popnode">Furukawa et al., 2013). They have attracted a great deal of interest in energy and environmental fields, such as energy storage, separation, and pollutant control (href="#bib29" rid="bib29" class=" bibr popnode">Sumida et al., 2012, href="#bib30" rid="bib30" class=" bibr popnode">Wang et al., 2014, href="#bib38" rid="bib38" class=" bibr popnode">Zhang et al., 2016).Here we demonstrate a novel strategy to uniformly decorate MOFs on reduced graphene oxide aerogel (rGA) by the combination of in situ crystallization of MOFs and naturally drying the resultant composited hydrogel. The microporous structures of zeolite imidazole framework-8 (ZIF-8) contribute to the high special surface area, whereas the macropores of rGAs provide accessibility to the active surfaces. Free metal sites, functional groups, and electrostatic interaction of ZIF-8/rGAs play the roles of ensuring good filtration efficiency of PM2.5. Benefited from these merits, the capture efficiencies for both PM2.5 and PM10 are over 99.3%, and >99.6%, respectively. The capture efficiencies remain high (>98.6% and 98.9%) after 7-h use. For practical application, we also demonstrated the post-adsorption separation of PM2.5 and filter reactivation for reuse, which has been largely neglected in the previous research. This study opens a new avenue for the next-generation filters with 3D advanced networks for fast, efficient, and sustainable treatment of air pollution under harsh working conditions.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介雾霾问题,主要由空气动力学直径定义的颗粒物(PM)2.5引起小于等于2.5μm会严重影响我们日常生活中的人类健康(,)。 2013年,世界人口中有87%居住在超过PM2.5限值10μgm -3 (世界卫生组织设定的空气质量限值)的区域。特别是在像中国这样的国家中,PM2.5的平均浓度达到54.5μgm −3 ,并且92%的人口在4个月内经历了超过120小时的不健康空气暴露( )。对中国PM2.5污染源的分析表明,主要的颗粒物排放来自交通,煤炭或生物质燃烧以及粉尘,而次要排放源主要来自SOx,NOx和挥发性有机化合物的气溶胶前体() 。 PM2.5的毒性成分以及由于其细小的人支气管和肺部渗透所引起的潜在威胁而严重威胁着人类健康。根据全球疾病负担报告,PM2.5是导致2013年290万人死亡的主要诱因()。因此,迫切需要一种高效的技术来快速捕获PM2.5,尤其是在排放源处。已经探索了解决PM2.5污染颗粒的先前策略,例如使用市售的空气滤清器(厚织物,活性炭等)。 ),极性聚合物纳米纤维过滤器(),导电银纳米线过滤器()和多孔金属有机框架(MOF)作为过滤器()。但是,常规空气过滤器的过滤通常在低初始浓度(<1,000μgcm -3 )和环境条件下进行。对于某些特定应用,例如车辆排气和烟囱排气的过滤,在恶劣条件下(例如高温,快速流量和高湿度),污染气体的流量和压力很高。如果仅使用这些常规膜,则可能无法有效捕获某些颗粒。要在苛刻的条件下实现高浓度PM的高去除效率和低压降,要实现强大的空气过滤器仍然是一大挑战()。因此,需要设计一种3D多孔框架,该框架具有均匀分布且连接良好的孔,以实现有效的粒子捕获(,)。理想的结构应该是高度多孔的,以最大程度地减少对高流速气体的阻力,并具有大的表面积来捕获颗粒。石墨烯气凝胶(GAs)将材料的化学性质与多孔网络相结合,可以满足上述要求以上。它们还具有很高的分离,吸附油,金属离子和有机溶剂的质量效率(href="#bib5" rid="bib5" class=" bibr popnode"> Cong等人,2012 )。自组装,交联,化学气相沉积(CVD)和3D打印是合成GA的常见方法(href="#bib3" rid="bib3" class=" bibr popnode"> Cao等人。,2011 ,href="#bib31" rid="bib31" class=" bibr popnode">魏等人,2013 ,href =“#bib34” rid =“ bib34“ class =” bibr popnode“>徐等人,2010 ,href="#bib42" rid="bib42" class=" bibr popnode">朱等人,2015 )。除了CVD以外,大多数这些方法都涉及冷冻或超临界干燥,这导致高成本和低产量。与这些方法相比,自然干燥技术因其生产率高和可扩展性更实用(href="#bib22" rid="bib22" class=" bibr popnode"> Li等,2016 ,href="#bib33" rid="bib33" class=" bibr popnode">徐等人,2016 ,href =“#bib35” rid =“ bib35” class =“ bibr popnode “> Yang等人,2015 )。为了使用GA最大化去除效率,可以在GA网络上修饰具有微孔或纳米级孔隙率的高比表面积吸附剂。在这方面,MOF是理想的候选者,因为它们是具有辅助建筑单元(金属簇或称为含金属的节点)和有机连接基(href =“#bib8” rid =“ bib8” class =“ bibr popnode“> Furukawa等人,2013 )。他们在能源和环境领域引起了极大的兴趣,例如能源存储,分离和污染物控制(href="#bib29" rid="bib29" class=" bibr popnode"> Sumida et al。, 2012 ,href="#bib30" rid="bib30" class=" bibr popnode"> Wang等人,2014 ,href =“#bib38” rid =“ bib38” class =“ bibr popnode”> Zhang等人。,2016 )。在此,我们展示了一种新颖的策略,可通过原位结晶MOF和自然干燥所得复合水凝胶的组合,在还原的氧化石墨烯气凝胶(rGA)上均匀装饰MOF。沸石咪唑骨架8(ZIF-8)的微孔结构有助于提高高比表面积,而rGA的大孔则提供了进入活性表面的通道。 ZIF-8 / rGA的自由金属位点,官能团和静电相互作用起确保PM2.5良好过滤效率的作用。受益于这些优点,PM2.5和PM10的捕获效率分别超过99.3%和> 99.6%。使用7小时后,捕获效率仍然很高(> 98.6%和98.9%)。对于实际应用,我们还演示了PM2.5的吸附后分离和过滤器活化后的重复使用,这在以前的研究中已被大大忽略。这项研究为具有3D先进网络的下一代过滤器开辟了一条新途径,以便在恶劣的工作条件下快速,有效和可持续地处理空气污染。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号