首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Systems-level Modeling with Molecular Resolution Elucidates the Rate-limiting Mechanisms of Cellulose Decomposition by Cellobiohydrolases
【2h】

Systems-level Modeling with Molecular Resolution Elucidates the Rate-limiting Mechanisms of Cellulose Decomposition by Cellobiohydrolases

机译:具有分子分辨率的系统级建模阐明​​了纤维二糖水解酶对纤维素分解的限速机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Interprotein and enzyme-substrate couplings in interfacial biocatalysis induce spatial correlations beyond the capabilities of classical mass-action principles in modeling reaction kinetics. To understand the impact of spatial constraints on enzyme kinetics, we developed a computational scheme to simulate the reaction network of enzymes with the structures of individual proteins and substrate molecules explicitly resolved in the three-dimensional space. This methodology was applied to elucidate the rate-limiting mechanisms of crystalline cellulose decomposition by cellobiohydrolases. We illustrate that the primary bottlenecks are slow complexation of glucan chains into the enzyme active site and excessive enzyme jamming along the crowded substrate. Jamming could be alleviated by increasing the decomplexation rate constant but at the expense of reduced processivity. We demonstrate that enhancing the apparent reaction rate required a subtle balance between accelerating the complexation driving force and simultaneously avoiding enzyme jamming. Via a spatiotemporal systems analysis, we developed a unified mechanistic framework that delineates the experimental conditions under which different sets of rate-limiting behaviors emerge. We found that optimization of the complexation-exchange kinetics is critical for overcoming the barriers imposed by interfacial confinement and accelerating the apparent rate of enzymatic cellulose decomposition.
机译:界面生物催化中的蛋白质间和酶-底物偶联诱导了空间相关性,超出了模型反应动力学建模中经典质量作用原理的能力。为了了解空间约束对酶动力学的影响,我们开发了一种计算方案来模拟酶的反应网络,其中各个蛋白质和底物分子的结构在三维空间中明确解析。该方法用于阐明纤维二糖水解酶结晶纤维素分解的限速机理。我们说明,主要瓶颈是葡聚糖链进入酶活性位点的缓慢复合和过多酶沿拥挤的底物阻塞。可以通过增加解络速率常数来缓解干扰,但要以降低生产率为代价。我们证明,提高表观反应速率需要在加速络合驱动力和同时避免酶堵塞之间保持微妙的平衡。通过时空系统分析,我们开发了一个统一的机制框架,该框架描述了在不同条件下出现限速行为的实验条件。我们发现优化络合交换动力学对于克服界面限制所施加的障碍以及加快酶促纤维素分解的表观速率至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号