首页> 美国卫生研究院文献>Genome Biology >Enhanced Integrated Gradients: improving interpretability of deep learning models using splicing codes as a case study
【2h】

Enhanced Integrated Gradients: improving interpretability of deep learning models using splicing codes as a case study

机译:增强的综合梯度:使用拼接代码提高深度学习模型的可解释性作为案例研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The high accuracy of deep neural networks (DNN) in areas such as computer vision, natural language processing, and robotics has led to the fast adaptation of DNN in biomedical research. In genomics, deep learning models have outperformed previous state-of-the-art methods on tasks such as predicting protein binding sites [1] or mRNA alternative splicing from genomic sequence features [2]. However, the interpretation of these complex models remains a challenge [3, 4]. Approaches to model interpretation include approximation with simpler models [5], identifying the most influential samples [6], or finding the most relevant features for a specific sample or a task by a variety of metrics [7]. Here, we focus on the last approach, which is naturally appealing for biomedical tasks. In this context, interpretability is defined as attributing the prediction of a DNN to its input features. We focus on the recently developed method called Integrated Gradients (IG) [8]. Both IG and DeepLIFT, which was recently used for protein DNA binding sites [9], identify features associated with a model’s prediction for a sample with respect to a baseline. The usage of a baseline is appealing as it serves as the model’s proxy to human counterfactual intuition. This implies that humans assign blame for difference in two entities on attributes that are present in one entity but absent in the other. IG computes feature attribution by aggregating gradients along a linear path between the sample and the baseline. Compared to other interpretation methods, IG offers two desirable theoretical guarantees motivating its usage. The first is sensitivity, which states that for every input and baseline that differ in one feature but have different predictions, the method will give a non-zero attribution for that differing feature. The second is implementation invariance, which states that regardless of network architecture, if two models are functionally equivalent (same output given any input), then their feature attributions will also be equivalent (see more details in [8]).
机译:计算机视觉,自然语言处理和机器人等领域的深神经网络(DNN)的高精度导致了DNN在生物医学研究中的快速调整。在基因组学中,深度学习模型在预测蛋白质结合位点[1]或mRNA替代剪接的任务中的先前最先进的方法[2]。然而,这些复杂模型的解释仍然是一个挑战[3,4]。模型解释的方法包括近似模型[5],识别最有影响力的样本[6],或者通过各种度量找到特定样本的最相关的功能[7]。在这里,我们专注于最后一种方法,这是对生物医学任务的自然吸引力。在这种情况下,解释性被定义为将DNN的预测归因于其输入特征。我们专注于最近开发的方法,称为集成梯度(IG)[8]。最近用于蛋白质DNA结合位点的Ig和Deplift均均识别与模型对基线对样品的预测相关的特征。基线的使用是吸引人的,因为它是模型对人类反事实直觉的代理。这意味着人类在一个实体中存在的属性上的两个实体中的差异被归咎于,但在另一个实体中缺席。 IG通过沿着样本和基线之间的线性路径聚合渐变来计算特征归因。与其他解释方法相比,IG提供了两个可取的理论保证,激励其使用。第一种是灵敏度,这使得对于每个特征不同但具有不同预测的每个输入和基线,该方法将为该不同特征提供非零归零。第二种是实现不变性,它的状态无论网络架构如何,如果两个型号在功能上等同(相同的输出给出任何输入),那么它们的特征属性也将是等效的(请参阅[8]中的更多详细信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号