首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Molecular Basis of Catalytic Chamber-assisted Unfolding and Cleavage of Human Insulin by Human Insulin-degrading Enzyme
【2h】

Molecular Basis of Catalytic Chamber-assisted Unfolding and Cleavage of Human Insulin by Human Insulin-degrading Enzyme

机译:催化室辅助展开和裂解的分子基础 通过人胰岛素降解的人胰岛素 酵素

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Insulin is a hormone vital for glucose homeostasis, and insulin-degrading enzyme (IDE) plays a key role in its clearance. IDE exhibits a remarkable specificity to degrade insulin without breaking the disulfide bonds that hold the insulin A and B chains together. Using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to obtain high mass accuracy, and electron capture dissociation (ECD) to selectively break the disulfide bonds in gas phase fragmentation, we determined the cleavage sites and composition of human insulin fragments generated by human IDE. Our time-dependent analysis of IDE-digested insulin fragments reveals that IDE is highly processive in its initial cleavage at the middle of both the insulin A and B chains. This ensures that IDE effectively splits insulin into inactive N- and C-terminal halves without breaking the disulfide bonds. To understand the molecular basis of the recognition and unfolding of insulin by IDE, we determined a 2.6-Å resolution insulin-bound IDE structure. Our structure reveals that IDE forms an enclosed catalytic chamber that completely engulfs and intimately interacts with a partially unfolded insulin molecule. This structure also highlights how the unique size, shape, charge distribution, and exosite of the IDE catalytic chamber contribute to its high affinity (∼100 nm) for insulin. In addition, this structure shows how IDE utilizes the interaction of its exosite with the N terminus of the insulin A chain as well as other properties of the catalytic chamber to guide the unfolding of insulin and allowing for the processive cleavages.
机译:胰岛素是葡萄糖体内稳态至关重要的激素,胰岛素降解酶(IDE)在其清除中起关键作用。 IDE具有出色的降解胰岛素的特异性,而不会破坏将胰岛素A和B链固定在一起的二硫键。使用傅立叶变换离子回旋共振(FTICR)质谱仪获得较高的质量准确度,并使用电子捕获解离(ECD)选择性地裂解气相裂解中的二硫键,我们确定了人IDE产生的人胰岛素片段的裂解位点和组成。我们对IDE消化的胰岛素片段的时间依赖性分析表明,IDE在胰岛素A和B链中部的初始切割过程中具有高度的合成能力。这样可确保IDE有效地将胰岛素分为非活性的N和C末端半部分,而不会破坏二硫键。为了了解IDE识别和展开胰岛素的分子基础,我们确定了2.6Å分辨率的胰岛素结合IDE结构。我们的结构表明,IDE形成了一个封闭的催化室,该催化室完全吞没并与部分未折叠的胰岛素分子紧密相互作用。这种结构还强调了独特的尺寸,形状,电荷分布和 IDE催化室有助于提高其高亲和力(约100 nm) 用于胰岛素。此外,此结构还显示了IDE如何利用 异位与胰岛素A链N末端的相互作用 作为催化室的其他特性来指导胰岛素的展开 并允许进行性分裂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号