首页> 美国卫生研究院文献>Entropy >A New Recurrence-Network-Based Time Series Analysis Approach for Characterizing System Dynamics
【2h】

A New Recurrence-Network-Based Time Series Analysis Approach for Characterizing System Dynamics

机译:基于新的基于网络的时间序列分析方法用于表征系统动态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a novel analysis method based on recurrence networks is proposed to characterize the evolution of dynamical systems. Through phase space reconstruction, a time series was transformed into a high-dimensional recurrence network and a corresponding low-dimensional recurrence network, respectively. Then, two appropriate statistics, the correlation coefficient of node degrees (CCND) and the edge similarity, were proposed to unravel the evolution properties of the considered signal. Through the investigation of the time series with distinct dynamics, different patterns in the decline rate of the CCND at different network dimensions were observed. Interestingly, an exponential scaling emerged in the CCND analysis for the chaotic time series. Moreover, it was demonstrated that the edge similarity can further characterize dynamical systems and provide detailed information on the studied time series. A method based on the fluctuation of edge similarities for neighboring edge groups was proposed to determine the number of groups that the edges should be partitioned into. Through the analysis of chaotic series corrupted by noise, it was demonstrated that both the CCND and edge similarity derived from different time series are robust under additive noise. Finally, the application of the proposed method to ventricular time series showed its effectiveness in differentiating healthy subjects from ventricular tachycardia (VT) patients.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号