首页> 美国卫生研究院文献>Regenerative Biomaterials >Tuning filament composition and microstructure of 3D-printed bioceramic scaffolds facilitate bone defect regeneration and repair
【2h】

Tuning filament composition and microstructure of 3D-printed bioceramic scaffolds facilitate bone defect regeneration and repair

机译:3D印刷的生物陶瓷支架的调整长丝组合物和微观结构促进了骨缺损再生和修复

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is still a challenge to optimize the component distribution and microporous structures in scaffolds for tailoring biodegradation (ion releasing) and enhancing bone defect repair within an expected time stage. Herein, the core–shell-typed nonstoichiometric wollastonite (4% and 10% Mg-doping calcium silicate; CSiMg4, CSiMg10) macroporous scaffolds with microporous shells (adding ∼10 μm PS microspheres into shell-layer slurry) were fabricated via 3D printing. The initial mechanical properties and bio-dissolution (ion releasing) in vitro, and osteogenic capacity in vivo of the bioceramic scaffolds were evaluated systematically. It was shown that endowing high-density micropores in the sparingly dissolvable CSiMg10 or dissolvable CSiMg4 shell layer inevitably led to nearly 30% reduction of compressive strength, but such micropores could readily tune the ion release behaviour of the scaffolds (CSiMg4@CSiMg10 vs. CSiMg4@CSiMg10-p; CSiMg10@CSiMg4 vs. CSiMg10@CSiMg4-p). Based on the in rabbit femoral bone defect repair model, the 3D μCT reconstruction and histological observation demonstrated that the CSiMg4@CSiMg10-p scaffolds displayed markedly higher osteogenic capability than the other scaffolds after 12 weeks of implantation. It demonstrated that core–shell bioceramic 3D printing technique can be developed to fabricate single-phase or biphasic bioactive ceramic scaffolds with accurately tailored filament biodegradation for promoting bone defect regeneration and repair in some specific pathological conditions.
机译:优化脚手架中的组件分布和微孔结构仍然是一项挑战,以剪裁生物降解(离子释放),并在预期的时间阶段提高骨缺陷修复。这里,通过3D印刷制造具有微孔壳(将〜10μmpsmps微球加入壳层浆料中的4%和10%Mg掺杂硅酸钙; Csimg4,Csimg10)大孔支架(将〜10μmps微球加入壳层浆料中的4%和10%Mg掺杂硅酸盐; Csimg4,Csimg10)。系统地评价体外初始机械性能和生物溶解(离子释放)和生物陶瓷支架体内体内的骨质发生能力。结果表明,在微溶解的CSIMG10或可溶解的CSIMG4壳层中赋予高密度微孔,不可避免地导致抗压强度的近30%,但这种微孔可以容易地调整支架的离子释放行为(CSIMG4 @ CSIMG10 Vs.CSIMG4 @ csimg10-p; csimg10 @ csimg4与csimg10 @ csimg4-p)。基于兔股骨缺陷修复模型,3DμCT重建和组织学观察表明,CSIMG4 @ CSIMG10-P支架显示出比在12周的植入后的其他支架上显示出比其他支架更高的成骨能力。它证明,可以开发核心 - 壳生物陶瓷3D印刷技术以制造单相或双相生物活性陶瓷支架,具有精确定制的长丝生物降解,用于促进一些特定病理条件下的骨缺损再生和修复。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号