首页> 美国卫生研究院文献>BMC Ophthalmology >To measure the amount of ocular deviation in strabismus patients with an eye-tracking virtual reality headset
【2h】

To measure the amount of ocular deviation in strabismus patients with an eye-tracking virtual reality headset

机译:测量眼睛跟踪虚拟现实耳机斜视患者的眼偏差量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A-C, the environment of virtual reality; D-F, virtual reality test in exotropic patients; G-I, virtual reality test in esotropic patients. (A) In orthotropic status, the targets of both eyes are superimposed without virtual prism effect. (B) In exotropic status, the target of the exotropic eye (left eye in this figure) is moved temporally to simulate a virtual prism base-in (BI) effect. (C) In esotropic status, the target of the esotropic eye (left eye in this figure) is moved nasally to simulate a virtual prism base-out (BO) effect. In B and C, the virtual distance between 2 targets is d (cm), and the distance between the eye and the virtual targets is 6 m. Thus, the virtual prism effect is d/6 (PD). The screens that patients see on the virtual reality device with each eye (D, G), the movement of the eyes (E, H), and the real-time result by the eye- tracking system (F, I) are demonstrated separately. The blackening of one screen simulating occlusion in the cover test is presented with gray background in Figs. E, F, H and I (left eye in these examples). The dotted circle is the position of the eye before occlusion, and the solid circle is in the position after occlusion. (D-F) In exotropic patients, when the screen of the left eye is blackened, the right eye moved nasally to track the target. A leftward movement of both eyes was able to be detected by the eye-tracking system. Next, a virtual prism base-in effect as shown in Fig. B was introduced to move the target of the left eye temporally. The operator then again blackened the screens until both eyes remained still. The final amount of introduced virtual prism base-in effect was then calculated to the angle of the ocular deviation (virtual prism effect d/6 (PD) as shown in Fig. B). (G-I) In esotropic patients, when the screen of the left eye is blackened, the right eye moved temporally to track the target. A rightward movement of both eyes was able to be detected by the eye- tracking system. Next, a virtual prism base-out effect as shown in Fig. C was introduced to move the target of the left eye nasally. The operator then again blackened the screens until both eyes remained still. The final amount of introduced virtual prism base-in effect was then calculated to the angle of the ocular deviation (virtual prism effect d/6 (PD) as shown in Fig. C). BI, base-in; BO, base-out; XT, exotropia; ET, esotropia; PD, prism diopter; m, meters
机译:A-C,虚拟现实的环境;外探患者的虚拟现实试验; G-I,辅音患者虚拟现实试验。 (a)在正交状态下,两只眼睛的目标都叠加而没有虚拟棱镜效果。 (b)在外熵状态下,突出眼睛的靶(本图中的左眼)在时间上移动以模拟虚拟棱镜基础(BI)效应。 (c)在辅音状态下,辅辅酶眼(本图中的左眼)的靶标在讽刺中,以模拟虚拟棱镜基出(BO)效果。在B和C中,2个目标之间的虚拟距离为d(cm),眼睛与虚拟目标之间的距离为6米。因此,虚拟棱镜效果是D / 6(PD)。患者用每只眼睛(d,g)在虚拟现实装置上看到的屏幕,眼睛(e,h)的运动和通过ext-trawing系统(f,i)的实时结果进行分开展示。在图1和2中呈现覆盖试验中的一个屏幕的黑化模拟闭塞。 e,f,h和i(在这些例子中左眼)。虚线圆是闭塞前眼睛的位置,并且固体圆在闭塞后处于该位置。 (D-F)在外辐射患者中,当左眼筛的屏幕变黑时,右眼鼻子移动迹象以跟踪目标。眼睛跟踪系统能够检测双眼的左移动。接下来,如图1所示的虚拟棱镜基础效果。被引入B以在时间上移动左眼的目标。然后,操作员再次将屏幕变黑,直到两只眼睛仍然保持静止。然后将引入的虚拟棱镜的最终量计算为眼睛偏差的角度(虚拟棱镜效果D / 6(PD),如图2所示。b)。 (G-I)在辅态患者中,当左眼筛的屏幕变黑时,右眼在时间上移动以跟踪目标。双眼的向右移动能够被醒目系统检测到。接下来,如图1所示的虚拟棱镜基出效果。引入C以移动左眼的靶标。然后,操作员再次将屏幕变黑,直到两只眼睛仍然保持静止。然后将引入的虚拟棱镜的最终量计算为眼睛偏差的角度(虚拟棱镜效应D / 6(PD),如图2所示。C)。 BI,基础; Bo,Base-Out; XT,Exotropia; et,浅滩; PD,棱镜屈光度; M,米

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号