首页> 美国卫生研究院文献>International Journal of Bioprinting >Preparation and printability of ultrashort self-assembling peptide nanoparticles
【2h】

Preparation and printability of ultrashort self-assembling peptide nanoparticles

机译:超短自组装肽纳米粒子的制备和可印刷性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nanoparticles (NPs) have left their mark on the field of bioengineering. Fabricated from metallic, magnetic, and metal oxide materials, their applications include drug delivery, bioimaging, and cell labeling. However, as they enter the body, the question remains – where do they go after fulfilling their designated function? As most materials used to produce NPs are not naturally found in the body, they are not biodegradable and may accumulate overtime. There is a lack of comprehensive, long-term studies assessing the biodistribution of non-biodegradable NPs for even the most widely studied NPs. There is a clear need for NPs produced from natural materials capable of degradation . As peptides exist naturally within the human body, their non-toxic and biocompatible nature comes as no surprise. Ultrashort peptides are aliphatic peptides designed with three to seven amino acids capable of self-assembling into helical fibers within macromolecular structures. Using a microfluidics flow-focusing approach, we produced different peptide-based NPs that were then three-dimensional (3D) printed with our novel printer setup. Herein, we describe the preparation method of NPs from ultrashort self-assembling peptides and their morphology in both manual and 3D-printed hydrogels, thus suggesting that peptide NPs are capable of withstanding the stresses involved in the printing process.
机译:纳米颗粒(NPs)在生物工程领域留下了自己的印记。由金属,磁性和金属氧化物材料制成,它们的应用包括药物输送,生物成像和细胞标记。但是,当它们进入人体时,问题仍然存在–它们在完成其指定功能后会去哪里?由于大多数用于生产NP的材料并非天然存在于人体中,因此它们不可生物降解,并可能随着时间的推移而积累。即使对于研究最广泛的NP,也缺乏全面,长期的研究来评估不可生物降解NP的生物分布。显然需要由能够降解的天然材料生产的NP。由于肽天然存在于人体内,因此其无毒和生物相容性也就不足为奇了。超短肽是设计有三到七个氨基酸的脂肪族肽,能够自组装成大分子结构内的螺旋纤维。使用微流体流聚焦方法,我们生产了不同的基于肽的NP,然后使用我们的新型打印机设置进行三维(3D)打印。在这里,我们描述了从超短自组装肽制备NP的方法及其在手动和3D打印的水凝胶中的形态,因此表明肽NP能够承受印刷过程中涉及的压力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号