首页> 美国卫生研究院文献>Microorganisms >Enhanced Adsorptive Bioremediation of Heavy Metals (Cd2+ Cr6+ Pb2+) by Methane-Oxidizing Epipelon
【2h】

Enhanced Adsorptive Bioremediation of Heavy Metals (Cd2+ Cr6+ Pb2+) by Methane-Oxidizing Epipelon

机译:甲烷氧化埃维隆增强对重金属(Cd2 +Cr6 +Pb2 +)的吸附生物修复

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cadmium (Cd), chromium (Cr) and lead (Pb) are heavy metals that have been classified as priority pollutants in aqueous environment while methane-oxidizing bacteria as a biofilter arguably consume up to 90% of the produced methane in the same aqueous environment before it escapes into the atmosphere. However, the underlying kinetics and active methane oxidizers are poorly understood for the hotspot of epipelon that provides a unique micro-ecosystem containing diversified guild of microorganisms including methane oxidizers for potential bioremediation of heavy metals. In the present study, the Pb , Cd and Cr bioremediation potential of epipelon biofilm was assessed under both high (120,000 ppm) and near-atmospheric (6 ppm) methane concentrations. Epipelon biofilm demonstrated a high methane oxidation activity following microcosm incubation amended with a high concentration of methane, accompanied by the complete removal of 50 mg L Pb and 50 mg L Cd (14 days) and partial (20%) removal of 50 mg L Cr after 20 days. High methane dose stimulated a faster (144 h earlier) heavy metal removal rate compared to near-atmospheric methane concentrations. DNA-based stable isotope probing (DNA-SIP) following CH microcosm incubation revealed the growth and activity of different phylotypes of methanotrophs during the methane oxidation and heavy metal removal process. High throughput sequencing of C-labelled particulate methane monooxygenase gene and 16S rRNA genes revealed that the prevalent active methane oxidizers were type I affiliated methanotrophs, i.e., . Type II methanotrophs including and were also labeled only under high methane concentrations. These results suggest that epipelon biofilm can serve as an important micro-environment to alleviate both methane emission and the heavy metal contamination in aqueous ecosystems with constant high methane fluxes.
机译:镉(Cd),铬(Cr)和铅(Pb)是重金属,在水环境中被列为优先污染物,而甲烷氧化细菌作为生物滤池可在同一水环境中消耗多达90%的甲烷在它逃到大气中之前然而,对于Epipelon的热点,人们对其潜在的动力学和活性甲烷氧化剂了解得很少,Epipelon热点提供了一个独特的微生态系统,其中包含多种微生物协会,包括甲烷氧化剂,可用于重金属的潜在生物修复。在本研究中,在高浓度(120,000 ppm)和接近大气浓度(6 ppm)的甲烷下评估了Epipelon生物膜的Pb,Cd和Cr生物修复潜力。 Epipelon生物膜在微生物培养后,经高浓度甲烷修正,具有高甲烷氧化活性,并伴有50 mg L Pb和50 mg L Cd的完全去除(14天)和50 mg L Cr的部分(20%)去除20天后。与接近大气中的甲烷浓度相比,高剂量的甲烷刺激了更快(较早144小时)的重金属去除速度。 CH微观温育后,基于DNA的稳定同位素探测(DNA-SIP)揭示了甲烷氧化和重金属去除过程中甲烷异养生物的不同系统型的生长和活性。 C-标记的颗粒甲烷单加氧酶基因和16S rRNA基因的高通量测序表明,普遍存在的活性甲烷氧化剂是I型伴生甲烷氧化菌,即。 II型甲烷营养生物,包括和也仅在高甲烷浓度下标记。这些结果表明,Epipelon生物膜可以作为重要的微环境,以减少甲烷排放以及甲烷流量不断增加的水性生态系统中的重金属污染。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号