首页> 美国卫生研究院文献>other >Glucose-Sensitive Nanoassemblies Comprising Affinity-Binding Complexes Trapped in Fuzzy Microshells
【2h】

Glucose-Sensitive Nanoassemblies Comprising Affinity-Binding Complexes Trapped in Fuzzy Microshells

机译:包含亲和结合复合物的葡萄糖敏感性纳米组件被困在模糊的微壳中。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new design for glucose monitoring with “smart” materials based on self assembly, competitive binding, and resonance energy transfer (RET) is presented. The basic transduction principle is changing RET efficiency from fluorescein isothiocyanate (FITC) to tetramethylrhodamine isothiocyanate (TRITC), as FITC-dextran is displaced from TRITC-Concanavalin A (Con A) with the addition of glucose. Nanoscale fabrication by self-assembly of Con A/dextran into multilayer films, followed by polymer multilayers. The advantages of this approach include physical localization and separation of sensing molecules from the environment via entrapment of the biosensor elements in a semi-permeable polymeric shell, and only functional molecules are included in the sensors. To realize these nanostructures, dissolvable resin microparticles were coated with FITC-dextran+TRITC-Con A multilayers, followed by polyelectrolyte multilayers, and the core particles were then dissolved to yield hollow capsules. The nanoassembly process was studied using microbalance mass measurements, fluorescence spectroscopy, confocal fluorescence microscopy, and zeta-potential measurements. The key findings are that the specific binding between Con A and dextran can be used to deposit ultrathin multilayer films, and these exhibit changing RET in response to glucose. Fluorescence spectra of a microcapsules exhibited a linear, glucose-specific, 27% increase in the relative fluorescence of FITC over the 0–1800 mg/dL range. These findings demonstrate the feasibility of using self-assembled microcapsules as optical glucose sensors, and serve as a basis for work toward better understanding the properties of these novel materials.
机译:提出了一种基于自我组装,竞争结合和共振能量转移(RET)的“智能”材料进行葡萄糖监测的新设计。基本的转导原理是将RET效率从异硫氰酸荧光素(FITC)变为异硫氰酸四甲基罗丹明(TRITC),因为在添加葡萄糖的情况下FITC-葡聚糖已从TRITC-伴刀豆球蛋白A(Con A)取代。通过将Con A /葡聚糖自组装成多层膜,然后是聚合物多层,进行纳米级制造。这种方法的优点包括通过将生物传感器元件截留在半透性聚合物壳中,将传感分子从环境中进行物理定位和分离,并且仅将功能分子包含在传感器中。为了实现这些纳米结构,可溶树脂微粒先用FITC-葡聚糖+ TRITC-Con A多层涂层,然后是聚电解质多层涂层,然后将核心颗粒溶解,制成空心胶囊。使用微量天平质量测量,荧光光谱,共聚焦荧光显微镜和ζ电势测量研究了纳米组装过程。关键发现是,Con A和右旋糖酐之间的特异性结合可用于沉积超薄多层膜,并且这些膜显示出响应于葡萄糖的RET变化。微胶囊的荧光光谱显示,在0–1800 mg / dL范围内,FITC的相对荧光呈线性,葡萄糖特异性的增加27%。这些发现证明了使用自组装微胶囊作为光学葡萄糖传感器的可行性,并为更好地理解这些新型材料的性质奠定了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号