首页> 美国卫生研究院文献>other >Investigation of the response of microstructures under the combined effect of mechanical shock and electrostatic forces
【2h】

Investigation of the response of microstructures under the combined effect of mechanical shock and electrostatic forces

机译:机械冲击和静电力共同作用下的微观结构响应研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is strong experimental evidence for the existence of strange modes of failure of microelectromechanical systems (MEMS) devices under mechanical shock and impact. Such failures have not been explained with conventional models of MEMS. These failures are characterized by overlaps between moving microstructures and stationary electrodes, which cause electrical shorts. This work presents modeling and simulation of MEMS devices under the combination of shock loads and electrostatic actuation, which sheds light on the influence of these forces on the pull-in instability. Our results indicate that the reported strange failures can be attributed to early dynamic pull-in instability. The results show that the combination of a shock load and an electrostatic actuation makes the instability threshold much lower than the threshold predicted, considering the effect of shock alone or electrostatic actuation alone. In this work, a single-degree-of-freedom model is utilized to investigate the effect of the shock–electrostatic interaction on the response of MEMS devices. Then, a reduced-order model is used to demonstrate the effect of this interaction on MEMS devices employing cantilever and clamped–clamped microbeams. The results of the reduced-order model are verified by comparing with finite-element predictions. It is shown that the shock–electrostatic interaction can be used to design smart MEMS switches triggered at a predetermined level of shock and acceleration.
机译:有强有力的实验证据表明,在机械冲击和冲击下,微机电系统(MEMS)器件存在奇怪的失效模式。此类故障未使用MEMS的常规模型进行解释。这些故障的特征是运动的微结构和固定电极之间的重叠,这会引起电气短路。这项工作介绍了在冲击载荷和静电激励的作用下MEMS器件的建模和仿真,这揭示了这些力对拉入不稳定性的影响。我们的结果表明,所报告的奇怪故障可归因于早期动态引入不稳定。结果表明,考虑到单独的冲击或单独的静电作用,冲击载荷和静电作用的组合使不稳定性阈值大大低于预测的阈值。在这项工作中,利用单自由度模型来研究冲击-静电相互作用对MEMS器件响应的影响。然后,使用降阶模型来证明这种相互作用对采用悬臂式和夹紧式微束的MEMS器件的影响。通过与有限元预测进行比较,验证了降阶模型的结果。结果表明,冲击-静电相互作用可用于设计在预定冲击和加速度水平下触发的智能MEMS开关。

著录项

  • 期刊名称 other
  • 作者单位
  • 年(卷),期 -1(16),11
  • 年度 -1
  • 页码 2463–2474
  • 总页数 35
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

  • 入库时间 2022-08-21 11:33:42

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号