首页> 美国卫生研究院文献>other >Mechanism of Spectral Tuning Going from Retinal in Vacuo to Bovine Rhodopsin and its Mutants: Multireference ab initio Quantum Mechanics/Molecular Mechanics Studies
【2h】

Mechanism of Spectral Tuning Going from Retinal in Vacuo to Bovine Rhodopsin and its Mutants: Multireference ab initio Quantum Mechanics/Molecular Mechanics Studies

机译:从Vacuo视网膜到牛视紫红质及其突变体的光谱调谐机理:从头开始的多参考量子力学/分子力学研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We have investigated photoabsorption spectra of bovine rhodopsin and its mutants (E122Q and E113Q) by hybrid quantum mechanical/molecular mechanical (QM/MM) calculations as well as retinal in vacuo by pure QM calculations, employing multireference (MR) ab initio and TD-B3LYP methods. The sophisticated MR-SORCI+Q and MRCISD+Q methods extrapolated with respect to adopted approximations can reproduce the experimental absorption maxima of retinal very well. The relatively inexpensive MR-DDCI2+Q method gives absorption maxima blue-shifted by ca. 65 nm from experimental values; however, this error is systematic and thus MR-DDCI2+Q can be used to estimate spectral shifts. In MR calculations, the ground state energy of retinal at B3LYP geometry is significantly lower than that at CASSCF geometry. Therefore, B3LYP geometry is more reliable than CASSCF geometry, which has blue-shift error as large as 100 nm in the gas phase. The effect of ground state geometry on the excitation energies is less critical in the polarizing field of protein environments. At the B3LYP geometry, there is no significant charge transfer upon vertical excitation to the S1 excited state either from Glu113 to retinal or from Schiff-base terminal to β-ionone ring through the polyene chain. All-trans to 11-cis isomerization of retinal in the gas phase has no influence on the calculated S1 absorbing state, in agreement with experiment. The shoulder of the experimental absorption spectrum of retinal in vacuo at the S1 absorbing band appears to be the second electronic transition (S2) in our calculations, contrary to previous tentative assignment to vibrational state of S1 or to the S1 band of a retinal isomer.
机译:我们已经通过混合量子力学/分子力学(QM / MM)计算以及纯净QM计算在真空中通过使用多参考(MR)从头算和TD-进行了研究,研究了牛视紫红质及其突变体(E122Q和E113Q)的光吸收光谱。 B3LYP方法。关于采用的近似值外推的复杂MR-SORCI + Q和MRCISD + Q方法可以很好地重现视网膜的实验吸收最大值。相对便宜的MR-DDCI2 + Q方法可以使吸收最大值发生蓝移约。实验值65 nm;但是,此误差是系统性的,因此MR-DDCI2 + Q可用于估计光谱偏移。在MR计算中,B3LYP几何结构的视网膜的基态能量显着低于CASSCF几何结构的视网膜。因此,B3LYP几何比CASSCF几何更可靠,后者在气相中的蓝移误差高达100 nm。基态几何形状对激发能的影响在蛋白质环境的极化场中并不那么关键。在B3LYP几何结构上,在垂直激发到S1激发态时,从Glu113到视网膜或从席夫碱末端到通过多烯链的β-紫罗兰酮环,都没有明显的电荷转移。与实验一致,气相中视网膜的全反式至11-顺式异构化对计算的S1吸收状态没有影响。在我们的计算中,在S1吸收带处,视网膜在真空中的实验吸收光谱的肩峰似乎是第二个电子跃迁(S2),这与先前对S1振动态或视网膜异构体的S1带的初步尝试相反。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号