首页> 美国卫生研究院文献>other >The Effect of H-bonding and Proton Transfer on the Voltammetry of 2356-Tetramethyl-p-phenylenediamine in Acetonitrile. An Unexpectedly Complex Mechanism for a Simple Redox Couple
【2h】

The Effect of H-bonding and Proton Transfer on the Voltammetry of 2356-Tetramethyl-p-phenylenediamine in Acetonitrile. An Unexpectedly Complex Mechanism for a Simple Redox Couple

机译:的影响H-键合和2356-四甲基 - 对苯二胺的乙腈的伏安法质子转移的。出乎意料的复杂机制的一个简单的氧化还原夫妇

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The voltammetry of 2,3,5,6-tetramethyl-p-phenylenediamine, H2PD, has been studied and compared to that of its isomer N,N,N’N’-tetramethyl-p-phenylenediamine, Me2PD. Both undergo two reversible electron transfer processes in acetonitrile that nominally correspond to 1e- oxidation to the radical cations, Me2PD+ and H2PD+, and a second 1e- oxidation at more positive potentials to the quinonediimine dications, Me2PD2+ and H2PD2+. While the voltammetry of Me2PD agrees with this simple mechanism, that of H2PD does not. The second voltammetric wave is too small. UV/Vis spectroelectrochemical experiments indicate that the second wave does correspond to oxidation of H2PD+ to H2PD2+ in solution. The fact that the second wave is not present at all at the lowest concentrations (5 µM), and that it increases at longer times and higher concentrations, indicates that H2PD+ is not the initial solution product of the first oxidation. A number of lines of evidence suggest instead that the initial product is a mixed valent, H-bonded dimer between one H2PD in the the full reduced, fully protonated state, H4PD2+, and another in the fully oxidized, fully deprotonated state, PD. A mechanism is proposed in which this dimer is formed on the electrode surface through proton transfer and H-bonding. Once desorbed into solution, it breaks apart via reaction with other H2PD’s, to give 2 H2PD+, which is the thermodynamically favored species in solution.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号