首页> 美国卫生研究院文献>other >Insights into substrate specificity of geranylgeranyl reductases revealed by the structure of digeranylgeranylglycerophospholipid reductase from Thermoplasma acidophilum an essential enzyme in the biosynthesis of archaeal membrane lipids
【2h】

Insights into substrate specificity of geranylgeranyl reductases revealed by the structure of digeranylgeranylglycerophospholipid reductase from Thermoplasma acidophilum an essential enzyme in the biosynthesis of archaeal membrane lipids

机译:洞察香叶基香叶基还原酶的底物特异性揭示digeranylgeranylglycerophospholipid还原酶从嗜酸热原体在古细菌膜脂的生物合成的必需酶的结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Archaeal membrane lipids consist of branched, saturated hydrocarbons distinct from those found in bacteria and eukaryotes. Digeranylgeranylglycerophospholipid reductase (DGGR) catalyzes the hydrogenation process that converts unsaturated 2,3-di-O-geranylgeranylglyceryl phosphate to saturated 2,3-di-O-phytanylglyceryl phosphate as a critical step in the biosynthesis of archaeal membrane lipids. The saturation of hydrocarbon chains confers the ability to resist hydrolysis and oxidation and helps archaea withstand extreme conditions. DGGR is a member of the geranylgeranyl reductase (GGR) family that is also widely distributed in bacteria and plants, where the family members are involved in the biosynthesis of photosynthetic pigments. We have determined the crystal structure of DGGR from the thermophilic heterotrophic archaea Thermoplasma acidophilum at 1.6 Å resolution, in complex with FAD and a bacterial lipid. The DGGR structure can be assigned to the well-studied, para-hydroxybenzoate hydroxylase (PHBH) SCOP superfamily of flavoproteins that include many aromatic hydroxylases and other enzymes with diverse functions. In the DGGR complex, FAD adopts the IN conformation (closed) previously observed in other PHBH flavoproteins. DGGR contains a large substrate-binding site that extends across the entire ligand-binding domain. Electron density corresponding to a bacterial lipid was found within this cavity. The cavity consists of a large opening that tapers down to two narrow curved tunnels that closely mimic the shape of the preferred substrate. We identified a sequence motif, PxxYxWxFP, that defines a specificity pocket in the structure and precisely aligns the double bond of the geranyl group with respect to the FAD cofactor, thus providing a structural basis for the substrate specificity of GGRs. DGGR is likely to share a common mechanism with other PHBH enzymes in which FAD switches between two conformations that correspond to the reductive and oxidative half cycles. The structure provides evidence that substrate binding likely involves conformational changes, which are coupled to the two conformational states of the FAD.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号