首页> 美国卫生研究院文献>other >In Vivo Analysis of the Role of Metabotropic Glutamate Receptors in the Afferent Regulation of Chick Cochlear Nucleus Neurons
【2h】

In Vivo Analysis of the Role of Metabotropic Glutamate Receptors in the Afferent Regulation of Chick Cochlear Nucleus Neurons

机译:体内分析代谢谷氨酸受体在鸡耳核神经元的累评中作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cochlea removal results in the death of approximately 20-30% of neurons in the chick nucleus magnocellularis (NM). One early event in NM neuronal degradation is the disruption of their ribosomes. This can be visualized in the first few hours following cochlea removal using Y10B, an antibody that recognizes ribosomal RNA. Previous studies using a brain slice preparation suggest that maintenance of ribosomal integrity in NM neurons requires metabotropic glutamate receptor (mGluR) activation. Isolating the brain slice in vitro, however, may eliminate other potential sources of trophic support and only allows for evaluation of the early changes that occur in NM neurons following deafferentation. Consequently, it is not known if mGluR activation is truly required for the maintenance of NM neurons in the intact system. The current experiments evaluated the importance of mGluRs in vivo. The effects of short-term receptor blockade were assessed through Y10B labeling and the effects of long-term blockade were assessed through stereological counting of NM neurons in Nissl-stained tissue. mGluR antagonists or vehicle were administered intracerebroventricularly following unilateral cochlea removal. Vehicle-treated subjects replicated the previously reported effects of cochlea removal, showing lighter Y10B-labeling and fewer Nissl-stained NM neurons on the deafened side of the brain. Blockade of mGluRs prevented the rapid activity-dependent difference in Y10B labeling, and in some cases, had the reverse effect, yielding lighter labeling of NM neurons on the intact side of the brain. Similarly, mGluR blockade over longer survival periods resulted in a reduction in number of cells on both intact and deafferented sides of the brain, and in some cases, yielded a reverse effect of fewer neurons on the intact side versus deafened side. These data are consistent with in vitro findings and suggest that mGluR activation plays a vital role in the afferent maintenance of NM neurons.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号