首页> 美国卫生研究院文献>Human Brain Mapping >Enhancing the Utility of Complex-Valued Functional Magnetic Resonance Imaging Detection of Neurobiological Processes Through Postacquisition Estimation and Correction of Dynamic B0 Errors and Motion
【2h】

Enhancing the Utility of Complex-Valued Functional Magnetic Resonance Imaging Detection of Neurobiological Processes Through Postacquisition Estimation and Correction of Dynamic B0 Errors and Motion

机译:加强神经生物学过程复值功能性磁共振成像检测通过收购后估计动态B0误差和运动的工具和修正

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Functional magnetic resonance imaging (fMRI) time series analysis is typically performed using only the magnitude portion of the data. The phase information remains unused largely due to its sensitivity to temporal variations in the magnetic field unrelated to the functional response of interest. These phase changes are commonly the result of physiologic processes such as breathing or motion either inside or outside the imaging field of view. As a result, although the functional phase response carries pertinent physiological information concerning the vasculature, one aspect of which is the location of large draining veins, the full hemodynamic phase response is understudied and is poorly understood, especially in comparison with the magnitude response. It is likely that the magnitude and phase contain disjoint information, which could be used in tandem to better characterize functional hemodynamics. In this work, simulated and human fMRI experimental data are used to demonstrate how statistical analysis of complex-valued fMRI time series can be problematic, and how robust analysis using these powerful and flexible complex-valued statistics is possible through postprocessing with correction for dynamic magnetic field fluctuations in conjunction with estimated motion parameters. These techniques require no special pulse sequence modifications and can be applied to any complex-valued echo planar imaging data set. This analysis shows that the phase component appears to contain information complementary to that in the magnitude and that processing and analysis techniques are available to investigate it in a robust and flexible manner.

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号