首页> 美国卫生研究院文献>other >Studies in RF Power Communication SAR and Temperature Elevation in Wireless Implantable Neural Interfaces
【2h】

Studies in RF Power Communication SAR and Temperature Elevation in Wireless Implantable Neural Interfaces

机译:无线植入式神经接口中的射频功率通信SAR和温度升高的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Implantable neural interfaces are designed to provide a high spatial and temporal precision control signal implementing high degree of freedom real-time prosthetic systems. The development of a Radio Frequency (RF) wireless neural interface has the potential to expand the number of applications as well as extend the robustness and longevity compared to wired neural interfaces. However, it is well known that RF signal is absorbed by the body and can result in tissue heating. In this work, numerical studies with analytical validations are performed to provide an assessment of power, heating and specific absorption rate (SAR) associated with the wireless RF transmitting within the human head. The receiving antenna on the neural interface is designed with different geometries and modeled at a range of implanted depths within the brain in order to estimate the maximum receiving power without violating SAR and tissue temperature elevation safety regulations. Based on the size of the designed antenna, sets of frequencies between 1 GHz to 4 GHz have been investigated. As expected the simulations demonstrate that longer receiving antennas (dipole) and lower working frequencies result in greater power availability prior to violating SAR regulations. For a 15 mm dipole antenna operating at 1.24 GHz on the surface of the brain, 730 uW of power could be harvested at the Federal Communications Commission (FCC) SAR violation limit. At approximately 5 cm inside the head, this same antenna would receive 190 uW of power prior to violating SAR regulations. Finally, the 3-D bio-heat simulation results show that for all evaluated antennas and frequency combinations we reach FCC SAR limits well before 1 °C. It is clear that powering neural interfaces via RF is possible, but ultra-low power circuit designs combined with advanced simulation will be required to develop a functional antenna that meets all system requirements.
机译:植入式神经接口被设计为提供高空间和时间精度的控制信号,以实现高度自由度的实时修复系统。与有线神经接口相比,射频(RF)无线神经接口的发展具有扩大应用程序数量以及扩展鲁棒性和寿命的潜力。然而,众所周知,RF信号被人体吸收并且会导致组织发热。在这项工作中,进行了具有分析验证的数值研究,以提供与人头内无线RF传输相关的功率,热量和比吸收率(SAR)的评估。神经接口上的接收天线设计为具有不同的几何形状,并在一定范围内在大脑内植入深度进行建模,以便在不违反SAR和组织温度升高安全法规的前提下估算最大接收功率。根据设计天线的大小,已经研究了1 GHz至4 GHz之间的频率集。如预期的那样,仿真表明,更长的接收天线(偶极子)和更低的工作频率会导致在违反SAR规定之前具有更高的功率可用性。对于在大脑表面以1.24 GHz工作的15毫米偶极天线,在联邦通信委员会(FCC)SAR违反限制下,可以收集到730 uW的功率。在头内大约5厘米处,在违反SAR规定之前,同一根天线将接收190 uW的功率。最后,3-D生物热模拟结果表明,对于所有评估的天线和频率组合,我们都在1°C之前达到了FCC SAR限值。很明显,可以通过RF为神经接口供电,但是需要超低功耗电路设计与高级仿真相结合,才能开发出满足所有系统要求的功能性天线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号