首页> 美国卫生研究院文献>other >Role of linear and voltage-dependent ionic currents in the generation of slow wave oscillations
【2h】

Role of linear and voltage-dependent ionic currents in the generation of slow wave oscillations

机译:线性和电压相关的离子电流在慢波振荡产生中的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Neuronal oscillatory activity is generated by a combination of ionic currents, including at least one inward regenerative current that brings the cell towards depolarized voltages and one outward current that repolarizes the cell. Such currents have traditionally been assumed to require voltage-dependence. Here we test the hypothesis that the voltage dependence of the regenerative inward current is not necessary for generating oscillations. Instead, a current INL that is linear in the biological voltage range and has negative conductance is sufficient to produce regenerative activity. The current INL can be considered a linear approximation to the negative-conductance region of the current-voltage relationship of a regenerative inward current. Using a simple conductance-based model, we show that INL, in conjunction with a voltage-gated, noninactivating outward current, can generate oscillatory activity. We use phase-plane and bifurcation analyses to uncover a rich variety of behaviors as the conductance of INL is varied, and show that oscillations emerge as a result of destabilization of the resting state of the model neuron. The model shows the need for well-defined relationships between the inward and outward current conductances, as well as their reversal potentials, in order to produce stable oscillatory activity. Our analysis predicts that a hyperpolarization-activated inward current can play a role in stabilizing oscillatory activity by preventing swings to very negative voltages, which is consistent with what is recorded in biological neurons in general. We confirm this prediction of the model experimentally in neurons from the crab stomatogastric ganglion.
机译:神经元振荡活动是由离子电流的组合产生的,离子电流包括至少一种使细胞趋向去极化电压的向内再生电流和一种使细胞趋向极化的向外电流。传统上已假设此类电流需要电压依赖性。在这里,我们测试了以下假设:再生内向电流的电压依赖性对于产生振荡不是必需的。相反,在生物电压范围内呈线性并且具有负电导的电流INL足以产生再生活性。电流INL可以被认为是对再生内向电流的电流-电压关系的负导电区域的线性近似。使用基于电导的简单模型,我们表明INL与电压门控的非灭活向外电流结合可以产生振荡活动。我们使用相平面和分叉分析来发现随着INL电导的变化而发生的多种行为,并显示出振荡是由于模型神经元的静止状态不稳定而产生的。该模型表明,在内向和外向电导及其反向电位之间需要有明确定义的关系,以便产生稳定的振荡活动。我们的分析预测,超极化激活的内向电流可以通过防止波动到非常负的电压来稳定振荡活动,这与一般在生物神经元中记录的一致。我们在螃蟹气胃神经节的神经元中实验性地证实了该模型的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号