首页> 美国卫生研究院文献>other >An Improved Ensemble of Random Vector Functional Link Networks Based on Particle Swarm Optimization with Double Optimization Strategy
【2h】

An Improved Ensemble of Random Vector Functional Link Networks Based on Particle Swarm Optimization with Double Optimization Strategy

机译:基于粒子群优化和双重优化策略的随机矢量功能链路网络改进集成。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For ensemble learning, how to select and combine the candidate classifiers are two key issues which influence the performance of the ensemble system dramatically. Random vector functional link networks (RVFL) without direct input-to-output links is one of suitable base-classifiers for ensemble systems because of its fast learning speed, simple structure and good generalization performance. In this paper, to obtain a more compact ensemble system with improved convergence performance, an improved ensemble of RVFL based on attractive and repulsive particle swarm optimization (ARPSO) with double optimization strategy is proposed. In the proposed method, ARPSO is applied to select and combine the candidate RVFL. As for using ARPSO to select the optimal base RVFL, ARPSO considers both the convergence accuracy on the validation data and the diversity of the candidate ensemble system to build the RVFL ensembles. In the process of combining RVFL, the ensemble weights corresponding to the base RVFL are initialized by the minimum norm least-square method and then further optimized by ARPSO. Finally, a few redundant RVFL is pruned, and thus the more compact ensemble of RVFL is obtained. Moreover, in this paper, theoretical analysis and justification on how to prune the base classifiers on classification problem is presented, and a simple and practically feasible strategy for pruning redundant base classifiers on both classification and regression problems is proposed. Since the double optimization is performed on the basis of the single optimization, the ensemble of RVFL built by the proposed method outperforms that built by some single optimization methods. Experiment results on function approximation and classification problems verify that the proposed method could improve its convergence accuracy as well as reduce the complexity of the ensemble system.
机译:对于集成学习,如何选择和组合候选分类器是两个关键问题,它们会极大地影响集成系统的性能。没有直接输入到输出链接的随机矢量功能链接网络(RVFL),由于其学习速度快,结构简单和良好的泛化性能,是适合集成系统的基本分类器之一。为了获得具有更强收敛性能的更紧凑的集成系统,提出了基于吸引和排斥粒子群优化(ARPSO)的双重优化策略的RVFL集成​​系统。在所提出的方法中,使用ARPSO来选择和组合候选RVFL。对于使用ARPSO选择最佳基础RVFL,ARPSO既考虑了验证数据的收敛精度,又考虑了构建RVFL集成​​的候选集成系统的多样性。在合并RVFL的过程中,通过最小范数最小二乘法初始化与基础RVFL对应的集合权重,然后通过ARPSO对其进行优化。最后,修剪一些冗余的RVFL,从而获得更紧凑的RVFL集合。此外,本文针对如何对分类问题进行基本剪枝的修剪进行了理论分析和论证,提出了一种针对分类和回归问题修剪多余的基本分类符的简单可行的策略。由于双重优化是在单一优化的基础上执行的,因此所提出的方法构建的RVFL集合的性能优于某些单一优化方法所构建的。在函数逼近和分类问题上的实验结果证明,该方法可以提高算法的收敛精度,并降低集成系统的复杂度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号