首页> 美国卫生研究院文献>other >Spectral model selection in the electronic measurement of the Boltzmann constant by Johnson noise thermometry
【2h】

Spectral model selection in the electronic measurement of the Boltzmann constant by Johnson noise thermometry

机译:约翰逊噪声测温法电子测量玻尔兹曼常数时的光谱模型选择

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the electronic measurement of the Boltzmann constant based on Johnson noise thermometry, the ratio of the power spectral densities of thermal noise across a resistor at the triple point of water, and pseudo-random noise synthetically generated by a quantum-accurate voltage-noise source is constant to within 1 part in a billion for frequencies up to 1 GHz. Given knowledge of this ratio, and the values of other parameters that are known or measured, one can determine the Boltzmann constant. Due, in part, to mismatch between transmission lines, the experimental ratio spectrum varies with frequency. We model this spectrum as an even polynomial function of frequency where the constant term in the polynomial determines the Boltzmann constant. When determining this constant (offset) from experimental data, the assumed complexity of the ratio spectrum model and the maximum frequency analyzed (fitting bandwidth) dramatically affects results. Here, we select the complexity of the model by cross-validation – a data-driven statistical learning method. For each of many fitting bandwidths, we determine the component of uncertainty of the offset term that accounts for random and systematic effects associated with imperfect knowledge of model complexity. We select the fitting bandwidth that minimizes this uncertainty. In the most recent measurement of the Boltzmann constant, results were determined, in part, by application of an earlier version of the method described here. Here, we extend the earlier analysis by considering a broader range of fitting bandwidths and quantify an additional component of uncertainty that accounts for imperfect performance of our fitting bandwidth selection method. For idealized simulated data with additive noise similar to experimental data, our method correctly selects the true complexity of the ratio spectrum model for all cases considered. A new analysis of data from the recent experiment yields evidence for a temporal trend in the offset parameters.
机译:在基于Johnson噪声测温法的Boltzmann常数的电子测量中,电阻在水的三点处的热噪声的功率谱密度与由量子精确的电压噪声源合成生成的伪随机噪声之比对于高达1 GHz的频率,常数保持在十亿分之一的范围内。有了这一比率的知识以及已知或测量的其他参数的值,就可以确定玻尔兹曼常数。部分原因是由于传输线之间的不匹配,实验比率频谱随频率而变化。我们将此频谱建模为频率的偶多项式函数,其中多项式中的常数项决定了玻耳兹曼常数。从实验数据确定该常数(偏移)时,比率频谱模型的假定复杂性和分析的最大频率(拟合带宽)会极大地影响结果。在这里,我们通过交叉验证(一种数据驱动的统计学习方法)选择模型的复杂性。对于许多拟合带宽中的每一个,我们确定偏移项的不确定性分量,该不确定性分量考虑了与模型复杂性的不完善知识相关的随机和系统效应。我们选择合适的带宽以最大程度地减少这种不确定性。在最新的玻尔兹曼常数测量中,部分通过使用此处所述方法的早期版本来确定结果。在这里,我们通过考虑更宽的拟合带宽范围来扩展早期的分析,并量化不确定性的其他成分,这会导致我们的拟合带宽选择方法的性能不理想。对于具有与实验数据相似的加性噪声​​的理想模拟数据,我们的方法针对所有考虑的情况正确选择了比率谱模型的真实复杂度。对来自最近实验的数据进行的新分析为偏移参数的时间趋势提供了证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号