首页> 美国卫生研究院文献>Nanoscale Research Letters >Enhanced Photoelectrochemical Behavior of H-TiO2 Nanorods Hydrogenated by Controlled and Local Rapid Thermal Annealing
【2h】

Enhanced Photoelectrochemical Behavior of H-TiO2 Nanorods Hydrogenated by Controlled and Local Rapid Thermal Annealing

机译:H-TiO2纳米棒的控制和局​​部快速热退火氢化反应增强的光电化学行为

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, colored H-doped TiO2 (H-TiO2) has demonstrated enhanced photoelectrochemical (PEC) performance due to its unique crystalline core—disordered shell nanostructures and consequent enhanced conduction behaviors between the core-shell homo-interfaces. Although various hydrogenation approaches to obtain H-TiO2 have been developed, such as high temperature hydrogen furnace tube annealing, high pressure hydrogen annealing, hydrogen-plasma assisted reaction, aluminum reduction and electrochemical reduction etc., there is still a lack of a hydrogenation approach in a controlled manner where all processing parameters (temperature, time and hydrogen flux) were precisely controlled in order to improve the PEC performance of H-TiO2 and understand the physical insight of enhanced PEC performance. Here, we report for the first time a controlled and local rapid thermal annealing (RTA) approach to prepare hydrogenated core-shell H-TiO2 nanorods grown on F:SnO2 (FTO) substrate in order to address the degradation issue of FTO in the typical TiO2 nanorods/FTO system observed in the conventional non-RTA treated approaches. Without the FTO degradation in the RTA approach, we systematically studied the intrinsic relationship between the annealing temperature, structural, optical, and photoelectrochemical properties in order to understand the role of the disordered shell on the improved photoelectrochemical behavior of H-TiO2 nanorods. Our investigation shows that the improvement of PEC performance could be attributed to (i) band gap narrowing from 3.0 to 2.9 eV; (ii) improved optical absorption in the visible range induced by the three-dimensional (3D) morphology and rough surface of the disordered shell; (iii) increased proper donor density; (iv) enhanced electron–hole separation and injection efficiency due to the formation of disordered shell after hydrogenation. The RTA approach developed here can be used as a suitable hydrogenation process for TiO2 nanorods/FTO system for important applications such as photocatalysis, hydrogen generation from water splitting and solar energy conversion.Electronic supplementary materialThe online version of this article (doi:10.1186/s11671-017-2105-x) contains supplementary material, which is available to authorized users.
机译:最近,彩色H掺杂的TiO2(H-TiO2)由于其独特的晶核-无序的壳纳米结构,并因此增强了核-壳同质界面之间的导电性能,因此表现出增强的光电化学(PEC)性能。尽管已经开发了各种氢化方法以获得H-TiO 2,例如高温氢炉管退火,高压氢退火,氢等离子体辅助反应,铝还原和电化学还原等,但是仍然缺少氢化方法。以受控方式对所有工艺参数(温度,时间和氢通量)进行精确控制,以提高H-TiO2的PEC性能并了解增强的PEC性能的物理见解。在这里,我们首次报道了一种控制和局部快速热退火(RTA)方法来制备在F:SnO2(FTO)衬底上生长的氢化核-壳H-TiO2纳米棒,以解决典型情况下FTO的降解问题。在常规的非RTA处理方法中观察到TiO2纳米棒/ FTO系统。在RTA方法中没有FTO降解的情况下,我们系统地研究了退火温度,结构,光学和光电化学性质之间的内在联系,以便了解无序壳对H-TiO2纳米棒改善的光电化学行为的作用。我们的研究表明,PEC性能的提高可归因于(i)带隙从3.0缩小至2.9eV; (ii)由三维(3D)形态和无序外壳的粗糙表面引起的可见光范围内的光吸收得到改善; (iii)增加适当的供体密度; (iv)由于氢化后形成无序壳,增强了电子-空穴分离和注入效率。本文开发的RTA方法可以用作TiO2纳米棒/ FTO系统的合适加氢工艺,用于光催化,水分解制氢和太阳能转化等重要应用。电子补充材料本文的在线版本(doi:10.1186 / s11671) -017-2105-x)包含补充材料,授权用户可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号