首页> 美国卫生研究院文献>Scientific Reports >In situ Fabrication of α-Bi2O3/(BiO)2CO3 Nanoplate Heterojunctions with Tunable Optical Property and Photocatalytic Activity
【2h】

In situ Fabrication of α-Bi2O3/(BiO)2CO3 Nanoplate Heterojunctions with Tunable Optical Property and Photocatalytic Activity

机译:具有可调光学性能和光催化活性的α-Bi2O3/(BiO)2CO3纳米板异质结的原位制备

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Exploring the full potential use of heterojunction photocatalysts containing bismuth has attracted considerable interest in recent years. Fabrication of well-defined heterojunction photocatalysts with precise modulation of their chemical composition is crucial for tuning their optical properties and photocatalytic activity. In this study, we fabricated nanoplate α-Bi2O3/(BiO)2CO3 heterojunctions through in situ thermal treatment of (BiO)2CO3 nanoplates synthesized using a facile hydrothermal process. Characterization results showed that the as-prepared Bi2O3/(BiO)2CO3 heterojunctions possessed distinct crystal interface and exhibited pronounced structural and optical modulation, resulting in significant improvement of their photocatalytic activity for NO removal under simulated solar light irradiation compared with pristine (BiO)2CO3. Electron spin resonance spectroscopy showed that ⋅OH radicals were the major reactive species involved in NO degradation, which is consistent with the theoretical analysis. The heterojunction formation can not only broaden the light absorption range but also improve the charge separation of photo-induced electron–hole pairs. This study is an important advancement in the development of semiconductor heterojunctions towards achieving functional photocatalysts.
机译:近年来,充分利用含铋的异质结光催化剂的潜在用途引起了人们的极大兴趣。精确定义其化学组成的明确定义的异质结光催化剂的制备对于调节其光学性能和光催化活性至关重要。在这项研究中,我们通过对使用方便的水热过程合成的(BiO)2CO3纳米板进行原位热处理来制造纳米板α-Bi2O3/(BiO)2CO3异质结。表征结果表明,所制得的Bi2O3 /(BiO)2CO3异质结具有明显的晶体界面,并表现出明显的结构和光学调制,与原始的(BiO)2CO3相比,在模拟太阳光照射下,其去除NO的光催化活性显着提高。 。电子自旋共振谱表明,·OH自由基是NO降解的主要反应物种,与理论分析相符。异质结的形成不仅可以拓宽光吸收范围,而且可以改善光致电子-空穴对的电荷分离。这项研究是半导体异质结在实现功能性光催化剂方面的重要进展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号