首页> 美国卫生研究院文献>Medical Physics >A novel electron gun for inline MRI-linac configurations
【2h】

A novel electron gun for inline MRI-linac configurations

机译:新型MRI电子直线加速器配置的电子枪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Purpose: This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted.>Methods: Simple electron gun geometry modifications of a Varian 600C electron gun are considered and solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner.>Results: Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ±15 cm along the axis of the 0.5 T magnet without capture efficiency reduction below the experimental value in zero field. In this range of linac displacements, the electron beam generated by the new gun geometry is more effectively injected into the linac in the presence of an external magnetic field, resulting in approximately 20% increase of the target current compared to the original gun geometry behavior at zero field. The new gun geometry can generate and accelerate electron beams in external magnetic fields without current loss for fields higher than 0.11 T. The new electron-gun geometry is robust enough to function in the fringe fields of the other two magnets with a target current loss of no more than 16% with respect to the current obtained with no external magnetic fields.>Conclusions: In this work, a specially designed electron gun was presented which can operate in the presence of axisymmetric strong magnetic fringe fields of MRI magnets. Computer simulations show that the electron gun can produce high quality beams which can be injected into a straight through linac such as Varian 600C and accelerated with more efficiency in the presence of the external magnetic fields. Also, the new configuration allows linac displacements along the magnet axis in a range equal to the diameter of the imaging spherical volume of the magnet under consideration. The new electron gun-linac system can function in the fringe field of a MRI magnet if the field strength at the cathode position is higher than 0.11 T. The capture efficiency of the linac depends on the magnetic field strength and the field gradient. The higher the gradient the better the capture efficiency. The capture efficiency does not degrade more than 16%.
机译:>目的:这项工作引入了一种新的电子枪几何形状,该几何形状在存在高强度外部磁场的情况下能够可靠地发挥功能,用于轴对称磁共振成像(MRI)-直线加速器配置。这允许串联MRI直线加速器运行,而无需使用磁屏蔽隔离线性加速器(直线加速器)。如果需要调整源到目标的距离,这种MRI-直线加速器集成方法不仅使磁体均匀性保持不变,而且还提供了直线加速器灵活性,可以沿着磁体的对称轴移动。>方法:在存在外部磁场的情况下,要考虑并解决Varian 600C电子枪的几何形状修改问题,以便确定新几何形状的一组设计原理。基于这些结果,提出了一种新的枪几何形状,并在0.5 T开孔MRI磁体(GE Signa SP)的边缘场中对其进行了优化。使用6 MeV Varian 600C直线加速器的计算机模型来确定在同一MRI扫描仪边缘场存在的情况下新电子枪-直线加速器系统的捕获效率。还在另外两个磁体,1.0 T原型空心磁体和1.5 T GE Con​​quest扫描仪的边缘场上研究了新型电子枪和直线加速器系统的性能。>结果:简单的几何修改原始电子枪的几何形状无法提供可行的解决方案。但是,这些测试表明,较小的横向阴极直径(带有平坦表面)和稍大的阳极直径可以减轻由于存在磁场时与阳极的电子束相互作用而引起的电流损耗。基于这些发现,提出了类似于在阳极上带有孔的平行板电容器的初始几何形状。优化过程发现阴极到阳极的距离为5 mm,聚焦电极角度为5°,阳极漂移管的长度为17.1 mm。而且,直线加速器可以沿0.5 T磁体的轴线移动±15 cm,而不会将捕获效率降低到零场以下的实验值以下。在此直线加速器位移范围内,在存在外部磁场的情况下,由新的电子枪几何结构产生的电子束可以更有效地注入到直线加速器中,与原来的电子枪几何行为相比,目标电流增加了约20%。零场。新的电子枪几何形状可以在外部磁场中产生和加速电子束,而对于大于0.11 T的场,则没有电流损耗。新的电子枪几何形状足够坚固,可以在其他两个磁体的边缘场中起作用,目标电流损耗为相对于在没有外部磁场的情况下获得的电流,不超过16%。>结论:在这项工作中,提出了一种特殊设计的电子枪,该电子枪可以在存在轴对称强磁场边缘磁场的情况下工作。 MRI磁铁。计算机仿真表明,电子枪可以产生高质量的电子束,可以将其注入直通直线加速器中,例如Varian 600C,并在存在外部磁场的情况下以更高的效率加速。同样,新配置允许直线加速器沿磁体轴的位移范围等于所考虑的磁体的成像球体直径。如果阴极位置的场强高于0.11 T,则新的电子枪-直线加速器系统可以在MRI磁体的边缘场中起作用。直线加速器的捕获效率取决于磁场强度和场梯度。梯度越高,捕获效率越好。捕获效率的下降幅度不超过16%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利