首页> 美国卫生研究院文献>Journal of Engineering Materials and Technology >Computational Coupled Method for Multiscale and Phase Analysis
【2h】

Computational Coupled Method for Multiscale and Phase Analysis

机译:多尺度和相位分析的计算耦合方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

On micro scale the constitutions of porous media are effected by other constitutions, so their behaviors are very complex and it is hard to derive theoretical formulations as well as to simulate on macro scale. For decades, in order to escape this complication, the phenomenological approaches in a field of multiscale methods have been extensively researched by many material scientists and engineers. Their theoretical approaches are based on the hierarchical multiscale methods using a priori knowledge on a smaller scale; however it has a drawback that an information loss can be occurred. Recently, according to a development of the core technologies of computer, the ways of multiscale are extended to a direct multiscale approach called the concurrent multiscale method. This approach is not necessary to deal with complex mathematical formulations, but it is noted as an important factor: development of computational coupling algorithms between constitutions in a porous medium. In this work, we attempt to develop coupling algorithms in different numerical methods finite element method (FEM), smoothed particle hydrodynamics (SPH) and discrete element method (DEM). Using this coupling algorithm, fluid flow, movement of solid particle, and contact forces between solid domains are computed via proposed discrete element which is based on SPH, FEM, and DEM. In addition, a mixed FEM on continuum level and discrete element model with SPH particles on discontinuum level is introduced, and proposed coupling algorithm is verified through numerical simulation.
机译:在微观尺度上,多孔介质的构造受到其他构造的影响,因此它们的行为非常复杂,很难得出理论公式以及在宏观上进行模拟。几十年来,为了避免这种复杂性,许多材料科学家和工程师对多尺度方法领域中的现象学方法进行了广泛的研究。他们的理论方法基于使用较小规模先验知识的分层多尺度方法。然而,其缺点是可能发生信息丢失。近年来,随着计算机核心技术的发展,将多尺度方法扩展为直接多尺度方法,称为并发多尺度方法。这种方法对于处理复杂的数学公式不是必需的,但是它被视为一个重要因素:在多孔介质中构造之间的计算耦合算法的发展。在这项工作中,我们尝试以不同的数值方法,有限元方法(FEM),平滑粒子流体动力学(SPH)和离散元方法(DEM)开发耦合算法。使用这种耦合算法,可以通过基于SPH,FEM和DEM的离散元件来计算流体流动,固体颗粒的运动以及固体域之间的接触力。另外,引入了连续谱层次上的有限元与不连续谱层次上有SPH粒子的离散单元模型的混合有限元,并通过数值模拟验证了所提出的耦合算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号