首页> 美国卫生研究院文献>Bioinformatics >CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction
【2h】

CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction

机译:CMsearch:同时探索蛋白质序列空间和结构空间不仅可以改善蛋白质同源性检测而且可以改善蛋白质结构预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Motivation: Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information.>Method: We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence–structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration.>Results: We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM–HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods.>Availability and implementation: Our program is freely available for download from .>Contact: >Supplementary information: are available at Bioinformatics online.
机译:>动机:蛋白质同源性检测是计算生物学中的一个基本问题,是预测蛋白质结构和理解蛋白质功能的必不可少的步骤。尽管近几十年来在序列比对,穿线和无比对方法方面取得了进步,但是蛋白质同源性检测仍然是一个具有挑战性的开放性问题。近来,试图在蛋白质结构空间中寻找传递途径的网络方法证明了结合结构空间的网络信息的重要性。然而,当前的方法将序列空间和结构空间合并为一个空间,从而在组合不同的信息源时引入了不一致。>方法:我们提出了一种基于网络的新型蛋白质同源性检测方法CMsearch ,基于跨模式学习。 CMsearch并没有探索由序列和结构空间信息的混合物构建的单个网络,而是构建了两个单独的网络来表示序列空间和结构空间。然后通过同时考虑序列信息,结构信息,序列空间信息和结构空间信息来学习序列-结构相关性。>结果:我们在两个挑战性任务(蛋白质同源性检测和蛋白质结构预测)上测试了CMsearch ,通过查询所有8332 PDB40蛋白。我们的结果表明,CMsearch对用于定义序列和结构空间的相似性度量不敏感。通过使用HMM–HMM比对作为序列相似性度量,CMsearch明显优于最新的同源性检测方法和基于CASP获奖模板的蛋白质结构预测方法。>可用性和实现:该程序可从以下位置免费下载。>联系方式:>补充信息:可从Bioinformatics在线获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号