首页> 美国卫生研究院文献>Astrobiology >The Effect of Host Star Spectral Energy Distribution and Ice-Albedo Feedback on the Climate of Extrasolar Planets
【2h】

The Effect of Host Star Spectral Energy Distribution and Ice-Albedo Feedback on the Climate of Extrasolar Planets

机译:宿主星光谱能量分布和冰反照率反馈对太阳系外行星气候的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO2 (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO2 in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global ice coverage. The surface ice-albedo feedback effect becomes less important at the outer edge of the habitable zone, where atmospheric CO2 could be expected to be high such that it maintains clement conditions for surface liquid water. We showed that ∼3–10 bar of CO2 will entirely mask the climatic effect of ice and snow, leaving the outer limits of the habitable zone unaffected by the spectral dependence of water ice and snow albedo. However, less CO2 is needed to maintain open water for a planet orbiting an M-dwarf star than would be the case for hotter main-sequence stars. Key Words: Extrasolar planets—M stars—Habitable zone—Snowball Earth. Astrobiology 13, 715–739.
机译:行星气候可能受宿主恒星光谱能量分布与冰和雪的波长相关反射率相互作用的影响。在这项研究中,我们使用一维(1-D)逐行辐射传输模型来探索这种效应,以计算宽带行星反照率作为季节性变化的一维能量平衡气候模型的输入。还使用了三维(3-D)总循环模型来研究大气对入射恒星辐射或星际变化和表面反照率变化的响应。使用这种模型层次,我们模拟了具有不同粒度的海洋,陆地和水冰所覆盖的行星,以及来自不同光谱类型的恒星的入射辐射。绕恒星运行的具有较高近紫外线辐射的地球行星表现出更强的冰-反照率反馈。我们发现,在F-矮星上运行的行星比在G-矮星上运行的行星在等通量距离上的冰度要大得多,而F矮行星上只有2的冰覆盖条件发生了。假设CO2固定(地球目前的大气水平),则相对于地球目前的星体而言,星体减少的百分比。一颗类似的行星以相等的通量距离绕太阳公转,需要减少8%的星际;而一颗绕M矮星绕行的行星则需要再减少19%的星际才能覆盖冰,相当于现代太阳的73%不变。对于绕着较冷恒星运转的行星,星际的减少必须更大,这在很大程度上是由于这些行星的冰表面对长波辐射的吸收更强,此外,大气中水蒸气和二氧化碳的吸收也更强,这提供了上升的下行长波辐射。降低M矮行星的红外和可见带表面冰雪反照率,可以提高其抵抗星体变化的气候稳定性,并减缓地球冰盖的速度。在可居住区的外缘,地表冰-反照率的反馈效应变得不那么重要了,在该区域中,大气中的CO2可能很高,从而保持了地表液态水的元素条件。我们表明,〜3-10 bar的CO2将完全掩盖冰雪的气候影响,而使可居住区的外部界限不受水冰和雪反照率的光谱依赖性影响。但是,与较热的主序恒星相比,维持M矮星运行的行星所需的二氧化碳要少得多。关键词:太阳系外行星-M恒星-宜居带-雪球地球。天体生物学13,715–739。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号