首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Flavobacterium johnsoniae as a Model Organism for Characterizing Biopolymer Utilization in Oligotrophic Freshwater Environments
【2h】

Flavobacterium johnsoniae as a Model Organism for Characterizing Biopolymer Utilization in Oligotrophic Freshwater Environments

机译:约翰逊黄杆菌是表征寡营养淡水环境中生物聚合物利用的模型生物

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biopolymers are important substrates for heterotrophic bacteria in oligotrophic freshwater environments, but information on bacterial growth kinetics with biopolymers is scarce. The objective of this study was to characterize bacterial biopolymer utilization in these environments by assessing the growth kinetics of Flavobacterium johnsoniae strain A3, which is specialized in utilizing biopolymers at μg liter−1 levels. Growth of strain A3 with amylopectin, xyloglucan, gelatin, maltose, or fructose at 0 to 200 μg C liter−1 in tap water followed Monod or Teissier kinetics, whereas growth with laminarin followed Teissier kinetics. Classification of the specific affinity of strain A3 for the tested substrates resulted in the following affinity order: laminarin (7.9 × 10−2 liter·μg−1 of C·h−1) ≫ maltose > amylopectin ≈ gelatin ≈ xyloglucan > fructose (0.69 × 10−2 liter·μg−1 of C·h−1). No specific affinity could be determined for proline, but it appeared to be high. Extracellular degradation controlled growth with amylopectin, xyloglucan, or gelatin but not with laminarin, which could explain the higher affinity for laminarin. The main degradation products were oligosaccharides or oligopeptides, because only some individual monosaccharides and amino acids promoted growth. A higher yield and a lower ATP cell−1 level was achieved at ≤10 μg C liter−1 than at >10 μg C liter−1 with every substrate except gelatin. The high specific affinities of strain A3 for different biopolymers confirm that some representatives of the classes Cytophagia-Flavobacteria are highly adapted to growth with these compounds at μg liter−1 levels and support the hypothesis that Cytophagia-Flavobacteria play an important role in biopolymer degradation in (ultra)oligotrophic freshwater environments.
机译:生物聚合物是贫营养淡水环境中异养细菌的重要底物,但有关生物聚合物细菌生长动力学的信息很少。这项研究的目的是通过评估约翰逊黄杆菌菌株A3的生长动力学来表征在这些环境中细菌生物聚合物的利用,该菌株专门用于利用μg升 -1 水平的生物聚合物。 A3菌株中支链淀粉,木葡聚糖,明胶,麦芽糖或果糖在0至200μgC升 -1 在自来水中的生长遵循Monod或Teissier动力学,而层粘连蛋白的生长遵循Teissier动力学。菌株A3对被测底物的特异性亲和力的分类导致以下亲和力顺序:层粘连蛋白(7.9×10 -2 升·μg -1 C·h < sup> −1 )≫麦芽糖>支链淀粉≈明胶≈木葡聚糖>果糖(0.69×10 −2 升·μg −1 C·h −1 )。无法确定脯氨酸的特异性亲和力,但似乎很高。细胞外降解用支链淀粉,木葡聚糖或明胶控制生长,但不使用层板蛋白,这可以解释对层板蛋白更高的亲和力。主要降解产物是寡糖或寡肽,因为只有一些单个的单糖和氨基酸促进生长。 ≤10μgC升 -1 的产量高于> 10μgC升 -1 的ATP细胞 -1 水平>除明胶外的所有底物。菌株A3对不同生物聚合物的高比亲和力证实,噬菌体-黄杆菌属的某些代表高度适应这些化合物在μg升 -1 水平下的生长,并支持了噬菌体-黄菌的假设在(超)贫营养淡水环境中生物聚合物降解中起重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号