首页> 美国卫生研究院文献>The Journal of Neuroscience >Dedicated Hippocampal Inhibitory Networks for Locomotion and Immobility
【2h】

Dedicated Hippocampal Inhibitory Networks for Locomotion and Immobility

机译:专用于运动和固定的海马抑制网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Network activity is strongly tied to animal movement; however, hippocampal circuits selectively engaged during locomotion or immobility remain poorly characterized. Here we examined whether distinct locomotor states are encoded differentially in genetically defined classes of hippocampal interneurons. To characterize the relationship between interneuron activity and movement, we used in vivo, two-photon calcium imaging in CA1 of male and female mice, as animals performed a virtual-reality (VR) track running task. We found that activity in most somatostatin-expressing and parvalbumin-expressing interneurons positively correlated with locomotion. Surprisingly, nearly one in five somatostatin or one in seven parvalbumin interneurons were inhibited during locomotion and activated during periods of immobility. Anatomically, the somata of somatostatin immobility-activated neurons were smaller than those of movement-activated neurons. Furthermore, immobility-activated interneurons were distributed across cell layers, with somatostatin-expressing cells predominantly in stratum oriens and parvalbumin-expressing cells mostly in stratum pyramidale. Importantly, each cell's correlation between activity and movement was stable both over time and across VR environments. Our findings suggest that hippocampal interneuronal microcircuits are preferentially active during either movement or immobility periods. These inhibitory networks may regulate information flow in “labeled lines” within the hippocampus to process information during distinct behavioral states.>SIGNIFICANCE STATEMENT The hippocampus is required for learning and memory. Movement controls network activity in the hippocampus but it's unclear how hippocampal neurons encode movement state. We investigated neural circuits active during locomotion and immobility and found interneurons were selectively active during movement or stopped periods, but not both. Each cell's response to locomotion was consistent across time and environments, suggesting there are separate dedicated circuits for processing information during locomotion and immobility. Understanding how the hippocampus switches between different network configurations may lead to therapeutic approaches to hippocampal-dependent dysfunctions, such as Alzheimer's disease or cognitive decline.
机译:网络活动与动物运动紧密相关;然而,在运动或不动时选择性地参与的海马回路的特征仍然很差。在这里,我们检查了在海马interneurons的遗传定义的类中不同的运动状态是否编码不同。为了表征中间神经元活动与运动之间的关系,我们在雄性和雌性小鼠的CA1中使用了体内双光子钙成像,因为动物执行了虚拟现实(VR)跟踪跑步任务。我们发现,大多数生长抑素表达和小白蛋白表达的中间神经元的活动与运动呈正相关。出人意料的是,在运动过程中抑制了近五分之一的生长抑素或七分之一的小白蛋白中间神经元,并在静止期间被激活。在解剖学上,生长抑素固定化激活神经元的躯体比运动激活神经元的小。此外,固定激活的中间神经元分布在整个细胞层中,生长抑素表达细胞主要分布在东方层,而表达白蛋白的细胞则主要分布在锥体细胞层。重要的是,每个单元的活动和运动之间的相关性在一段时间内以及在整个VR环境中都是稳定的。我们的发现表明,在运动或不活动期间,海马神经元间微电路都优先活动。这些抑制网络可能会调节海马内“标记线”中的信息流,以在不同的行为状态下处理信息。>重要声明海马是学习和记忆所必需的。运动控制着海马的网络活动,但尚不清楚海马神经元如何编码运动状态。我们研究了在运动和不活动期间活跃的神经回路,发现中间神经元在运动或停止期间有选择性地活跃,但并非两者都活跃。每个单元对运动的响应在时间和环境上都是一致的,这表明在运动和静止期间有单独的专用电路来处理信息。了解海马如何在不同的网络配置之间切换可能会导致治疗方法,以治疗海马依赖性功能障碍,例如阿尔茨海默氏病或​​认知功能减退。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号