首页> 美国卫生研究院文献>Biophysical Journal >Identification of Allosteric Disulfides from Prestress Analysis
【2h】

Identification of Allosteric Disulfides from Prestress Analysis

机译:从预应力分析中识别变构二硫键

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Disulfide bonds serve to form physical cross-links between residues in protein structures, thereby stabilizing the protein fold. Apart from this purely structural role, they can also be chemically active, participating in redox reactions, and they may even potentially act as allosteric switches controlling protein functions. Specific types of disulfide bonds have been identified in static protein structures from their distinctive pattern of dihedral bond angles, and the allosteric function of such bonds is purported to be related to the torsional strain they store. Using all-atom molecular-dynamics simulations for ∼700 disulfide bonded proteins, we analyzed the intramolecular mechanical forces in 20 classes of disulfide bonds. We found that two particular classes, the −RHStaple and the −/+RHHook disulfides, are indeed more stressed than other disulfide bonds, but the stress is carried primarily by stretching of the S-S bond and bending of the neighboring bond angles, rather than by dihedral torsion. This stress corresponds to a tension force of magnitude ∼200 pN, which is balanced by repulsive van der Waals interactions between the cysteine Cα atoms. We confirm stretching of the S-S bond to be a general feature of the −RHStaples and the −/+RHHooks by analyzing ∼20,000 static protein structures. Given that forced stretching of S-S bonds is known to accelerate their cleavage, we propose that prestress of allosteric disulfide bonds has the potential to alter the reactivity of a disulfide, thereby allowing us to readily switch between functional states.
机译:二硫键用于在蛋白质结构中的残基之间形成物理交联,从而稳定蛋白质折叠。除了这种纯粹的结构作用外,它们还可以具有化学活性,参与氧化还原反应,甚至可能潜在地充当控制蛋白质功能的变构开关。已从静态蛋白质结构中从二面键角度的独特模式中识别出特定类型的二硫键,并且据称此类键的变构功能与其所存储的扭转应变有关。使用约700个二硫键蛋白的全原子分子动力学模拟,我们分析了20类二硫键的分子内机械力。我们发现-RHStaple和-/ + RHHook二硫键这两个特定类别确实比其他二硫键承受更大的应力,但是应力主要是通过拉伸SS键和弯曲相邻的键角而不是通过二面角扭转。该应力对应于〜200 pN的拉力,该拉力由半胱氨酸Cα原子之间的排斥范德华相互作用所平衡。通过分析约20,000个静态蛋白质结构,我们确认S-S键的延伸是-RHStaples和-/ + RHHooks的普遍特征。鉴于已知S-S键的强制拉伸会加速其裂解,因此我们提出,变构二硫键的预应力有可能改变二硫键的反应性,从而使我们能够在功能状态之间轻松切换。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号