首页> 美国卫生研究院文献>The Journal of Physiology >In vitro models of the cardiac microenvironment to study myocyte and non‐myocyte crosstalk: bioinspired approaches beyond the polystyrene dish
【2h】

In vitro models of the cardiac microenvironment to study myocyte and non‐myocyte crosstalk: bioinspired approaches beyond the polystyrene dish

机译:用于研究心肌细胞和非心肌细胞串扰的心脏微环境体外模型:超越聚苯乙烯培养皿的生物启发方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The heart is a complex pluricellular organ composed of cardiomyocytes and non‐myocytes including fibroblasts, endothelial cells and immune cells. Myocytes are responsible for electrical conduction and contractile force generation, while the other cell types are responsible for matrix deposition, vascularization, and injury response. Myocytes and non‐myocytes are known to communicate and exert mutual regulatory effects. In concert, they determine the structural, electrical and mechanical characteristics in the healthy and remodelled myocardium. Dynamic crosstalk between myocytes and non‐myocytes plays a crucial role in stress/injury‐induced hypertrophy and fibrosis development that can ultimately lead to heart failure and arrhythmias. Investigations of heterocellular communication in the myocardium are hampered by the intricate interspersion of the different cell types and the complexity of the tissue architecture. In vitro models have facilitated investigations of cardiac cells in a direct and controllable manner and have provided important functional and mechanistic insights. However, these cultures often lack regulatory input from the other cell types as well as additional topographical, electrical, mechanical and biochemical cues from the cardiac microenvironment that all contribute to modulating cell differentiation, maturation, alignment, function and survival. Advancements in the development of more complex pluricellular physiological platforms that incorporate diverse cues from the myocardial microenvironment are expected to lead to more physiologically relevant cardiac tissue‐like in vitro models for mechanistic biological research, disease modelling, therapeutic target identification, drug testing and regeneration.
机译:心脏是复杂的多细胞器官,由心肌细胞和非心肌细胞(包括成纤维细胞,内皮细胞和免疫细胞)组成。心肌细胞负责电传导和收缩力的产生,而其他细胞类型负责基质的沉积,血管化和损伤反应。众所周知,肌细胞和非肌细胞可以交流并发挥相互调节作用。一致地,它们确定了健康和重塑的心肌的结构,电气和机械特性。肌细胞与非肌细胞之间的动态串扰在压力/损伤引起的肥大和纤维化发展中起着至关重要的作用,最终可能导致心力衰竭和心律不齐。不同细胞类型的复杂散布和组织结构的复杂性阻碍了心肌异源通讯的研究。在体外模型中,以直接且可控的方式促进了对心脏细胞的研究,并提供了重要的功能和机理见解。然而,这些培养物通常缺乏来自其他细胞类型的调控输入以及来自心脏微环境的其他地形,电,机械和生化线索,这些线索均有助于调节细胞分化,成熟,排列,功能和存活。结合了来自心肌微环境的多种线索的更复杂的多细胞生理平台的开发进展有望导致更生理相关的心脏组织,例如用于机械生物学研究,疾病建模,治疗靶标识别,药物测试和再生的体外模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号