首页> 美国卫生研究院文献>Viruses >High Throughput Manufacturing of Bacteriophages Using Continuous Stirred Tank Bioreactors Connected in Series to Ensure Optimum Host Bacteria Physiology for Phage Production
【2h】

High Throughput Manufacturing of Bacteriophages Using Continuous Stirred Tank Bioreactors Connected in Series to Ensure Optimum Host Bacteria Physiology for Phage Production

机译:使用串联的连续搅拌槽生物反应器进行噬菌体的高通量生产以确保用于噬菌体生产的最佳宿主细菌生理学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Future industrial demand for large quantities of bacteriophages e.g., for phage therapy, necessitates the development of scalable Good Manufacturing Practice compliant (cGMP) production platforms. The continuous production of high titres of E coli T3 phages (1011 PFU mL−1) was achieved using two continuous stirred tank bioreactors connected in series, and a third bioreactor was used as a final holding tank operated in semi-batch mode to finish the infection process. The first bioreactor allowed the steady-state propagation of host bacteria using a fully synthetic medium with glucose as the limiting substrate. Host bacterial growth was decoupled from the phage production reactor downstream of it to suppress the production of phage-resistant mutants, thereby allowing stable operation over a period of several days. The novelty of this process is that the manipulation of the host reactor dilution rates (range 0.1–0.6 hr−1) allows control over the physiological state of the bacterial population. This results in bacteria with considerably higher intracellular phage production capability whilst operating at high dilution rates yielding significantly higher overall phage process productivity. Using a pilot-scale chemostat system allowed optimisation of the upstream phage amplification conditions conducive for high intracellular phage production in the host bacteria. The effect of the host reactor dilution rates on the phage burst size, lag time, and adsorption rate were evaluated. The host bacterium physiology was found to influence phage burst size, thereby affecting the productivity of the overall process. Mathematical modelling of the dynamics of the process allowed parameter sensitivity evaluation and provided valuable insights into the factors affecting the phage production process. The approach presented here may be used at an industrial scale to significantly improve process control, increase productivity via process intensification, and reduce process manufacturing costs through process footprint reduction.
机译:未来工业上对大量噬菌体的需求,例如用于噬菌体治疗,需要开发可扩展的符合《药品生产质量管理规范》(cGMP)的生产平台。使用两个串联的连续搅拌罐生物反应器可连续生产高滴度的大肠杆菌T3噬菌体(10 11 PFU mL -1 ),第三个生物反应器是用作半分批操作的最终储罐,以完成感染过程。第一个生物反应器允许使用完全合成的培养基,以葡萄糖为限制底物,使宿主细菌稳态繁殖。将宿主细菌的生长与其下游的噬菌体生产反应器解耦,以抑制噬菌体抗性突变体的产生,从而在几天内稳定运行。该过程的新颖之处在于,通过控制宿主反应器的稀释率(范围为0.1–0.6 hr -1 ),可以控制细菌种群的生理状态。这导致细菌具有明显更高的细胞内噬菌体生产能力,同时以高稀释率运行,从而显着提高了总体噬菌体生产效率。使用中试规模的恒化器系统可以优化上游噬菌体扩增条件,有利于宿主细菌中高细胞内噬菌体生产。评估了宿主反应器稀释率对噬菌体破裂大小,滞后时间和吸附率的影响。发现宿主细菌的生理学影响噬菌体的破裂大小,从而影响整个过程的生产率。过程动力学的数学建模可以评估参数敏感性,并为影响噬菌体生产过程的因素提供有价值的见解。此处介绍的方法可以在工业规模上使用,以显着改善过程控制,通过过程强化来提高生产率,并通过减少过程占地面积来降低过程制造成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号