首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Multi-analyte Biochip (MAB) Based on All-solid-state Ion-selective Electrodes (ASSISE) for Physiological Research
【2h】

Multi-analyte Biochip (MAB) Based on All-solid-state Ion-selective Electrodes (ASSISE) for Physiological Research

机译:基于全固态离子选择电极(ASSISE)的多分析物生物芯片(MAB)用于生理研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lab-on-a-chip (LOC) applications in environmental, biomedical, agricultural, biological, and spaceflight research require an ion-selective electrode (ISE) that can withstand prolonged storage in complex biological media 1-4. An all-solid-state ion-selective-electrode (ASSISE) is especially attractive for the aforementioned applications. The electrode should have the following favorable characteristics: easy construction, low maintenance, and (potential for) miniaturization, allowing for batch processing. A microfabricated ASSISE intended for quantifying H+, Ca2+, and CO32- ions was constructed. It consists of a noble-metal electrode layer (i.e. Pt), a transduction layer, and an ion-selective membrane (ISM) layer. The transduction layer functions to transduce the concentration-dependent chemical potential of the ion-selective membrane into a measurable electrical signal.The lifetime of an ASSISE is found to depend on maintaining the potential at the conductive layer/membrane interface 5-7. To extend the ASSISE working lifetime and thereby maintain stable potentials at the interfacial layers, we utilized the conductive polymer (CP) poly(3,4-ethylenedioxythiophene) (PEDOT) 7-9 in place of silver/silver chloride (Ag/AgCl) as the transducer layer. We constructed the ASSISE in a lab-on-a-chip format, which we called the multi-analyte biochip (MAB) (>Figure 1).Calibrations in test solutions demonstrated that the MAB can monitor pH (operational range pH 4-9), CO32- (measured range 0.01 mM - 1 mM), and Ca2+ (log-linear range 0.01 mM to 1 mM). The MAB for pH provides a near-Nernstian slope response after almost one month storage in algal medium. The carbonate biochips show a potentiometric profile similar to that of a conventional ion-selective electrode. Physiological measurements were employed to monitor biological activity of the model system, the microalga Chlorella vulgaris.The MAB conveys an advantage in size, versatility, and multiplexed analyte sensing capability, making it applicable to many confined monitoring situations, on Earth or in space.Biochip Design and Experimental MethodsThe biochip is 10 x 11 mm in dimension and has 9 ASSISEs designated as working electrodes (WEs) and 5 Ag/AgCl reference electrodes (REs). Each working electrode (WE) is 240 μm in diameter and is equally spaced at 1.4 mm from the REs, which are 480 μm in diameter. These electrodes are connected to electrical contact pads with a dimension of 0.5 mm x 0.5 mm. The schematic is shown in >Figure 2.Cyclic voltammetry (CV) and galvanostatic deposition methods are used to electropolymerize the PEDOT films using a Bioanalytical Systems Inc. (BASI) C3 cell stand (>Figure 3). The counter-ion for the PEDOT film is tailored to suit the analyte ion of interest. A PEDOT with poly(styrenesulfonate) counter ion (PEDOT/PSS) is utilized for H+ and CO32-, while one with sulphate (added to the solution as CaSO4) is utilized for Ca2+. The electrochemical properties of the PEDOT-coated WE is analyzed using CVs in redox-active solution (i.e. 2 mM potassium ferricyanide (K3Fe(CN)6)). Based on the CV profile, Randles-Sevcik analysis was used to determine the effective surface area 10. Spin-coating at 1,500 rpm is used to cast ~2 μm thick ion-selective membranes (ISMs) on the MAB working electrodes (WEs).The MAB is contained in a microfluidic flow-cell chamber filled with a 150 μl volume of algal medium; the contact pads are electrically connected to the BASI system (>Figure 4). The photosynthetic activity of Chlorella vulgaris is monitored in ambient light and dark conditions.
机译:芯片实验室(LOC)在环境,生物医学,农业,生物和航天研究中的应用要求离子选择电极(ISE)能够在复杂的生物介质中长期保存 1-4 。全固态离子选择电极(ASSISE)对于上述应用特别有吸引力。电极应具有以下有利特性:易于构造,维护成本低和(可能)小型化,可进行批处理。构建了用于定量H + ,Ca 2 + 和CO3 2-离子的微型ASSISE。它由贵金属电极层(即Pt),转换层和离子选择膜(ISM)层组成。转换层的作用是将离子选择性膜的浓度相关化学势转换为可测量的电信号。发现ASSISE的寿命取决于维持导电层/膜界面的电势 5-7 。为了延长ASSISE的使用寿命,从而在界面层上保持稳定的电势,我们使用导电聚合物(CP)聚(3,4-乙撑二氧噻吩)(PEDOT) 7-9 代替了银/氯化银(Ag / AgCl)作为换能器层。我们以芯片实验室形式构建了ASSISE,我们将其称为多分析物生物芯片(MAB)(>图1 )。在测试溶液中的校准表明MAB可以监测pH(操作范围pH 4-9),CO3 2- (测量范围0.01 mM-1 mM)和Ca 2 + (对数线性范围0.01 mM至1 mM) 。在藻类培养基中储存近一个月后,pH的MAB提供了接近能斯特的斜率响应。碳酸盐生物芯片显示出与常规离子选择电极相似的电位分布。生理测量用于监测模型系统微藻小球藻的生物活性,MAB在尺寸,多功能性和多分析物感测能力方面具有优势,使其适用于地球或太空中的许​​多受限监测情况。设计和实验方法该生物芯片的尺寸为10 x 11 mm,具有9个被指定为工作电极(WEs)的ASSISE和5个Ag / AgCl参比电极(REs)。每个工作电极(WE)的直径为240μm,与直径为480μm的RE的间距相等,为1.4 mm。这些电极连接到尺寸为0.5 mm x 0.5 mm的电接触垫。原理图显示在>图2 中。使用生物分析系统公司(BASI)C3电池架,使用循环伏安法(CV)和恒电流沉积方法对PEDOT膜进行电聚合(>图3 < / strong>)。 PEDOT膜的抗衡离子经过定制以适合目标分析物离子。一种带有聚(苯乙烯磺酸盐)抗衡离子(PEDOT / PSS)的PEDOT用于H + 和CO3 2-,而另一种带有硫酸盐(以CaSO4的形式添加到溶液中)用于Ca 2 + 。使用CV在氧化还原活性溶液(即2 mM铁氰化钾(K3Fe(CN)6))中分析PEDOT涂层WE的电化学性能。基于CV曲线,使用Randles-Sevcik分析确定有效表面积 10 。 1,500 rpm的旋涂用于在MAB工作电极(WEs)上浇铸约2μm厚的离子选择膜(ISMs).MAB包含在装有150μl藻类培养基的微流槽中;接触垫电连接到BASI系统(>图4 )。在环境光和暗条件下监测小球藻的光合作用活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号