首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Using Luciferase to Image Bacterial Infections in Mice
【2h】

Using Luciferase to Image Bacterial Infections in Mice

机译:使用萤光素酶对小鼠的细菌感染进行成像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Imaging is a valuable technique that can be used to monitor biological processes. In particular, the presence of cancer cells, stem cells, specific immune cell types, viral pathogens, parasites and bacteria can be followed in real-time within living animals 1-2. Application of bioluminescence imaging to the study of pathogens has advantages as compared to conventional strategies for analysis of infections in animal models3-4. Infections can be visualized within individual animals over time, without requiring euthanasia to determine the location and quantity of the pathogen. Optical imaging allows comprehensive examination of all tissues and organs, rather than sampling of sites previously known to be infected. In addition, the accuracy of inoculation into specific tissues can be directly determined prior to carrying forward animals that were unsuccessfully inoculated throughout the entire experiment. Variability between animals can be controlled for, since imaging allows each animal to be followed individually. Imaging has the potential to greatly reduce animal numbers needed because of the ability to obtain data from numerous time points without having to sample tissues to determine pathogen load3-4.This protocol describes methods to visualize infections in live animals using bioluminescence imaging for recombinant strains of bacteria expressing luciferase. The click beetle (CBRLuc) and firefly luciferases (FFluc) utilize luciferin as a substrate5-6. The light produced by both CBRluc and FFluc has a broad wavelength from 500 nm to 700 nm, making these luciferases excellent reporters for the optical imaging in living animal models7-9. This is primarily because wavelengths of light greater than 600 nm are required to avoid absorption by hemoglobin and, thus, travel through mammalian tissue efficiently. Luciferase is genetically introduced into the bacteria to produce light signal10. Mice are pulmonary inoculated with bioluminescent bacteria intratracheally to allow monitoring of infections in real time. After luciferin injection, images are acquired using the IVIS Imaging System. During imaging, mice are anesthetized with isoflurane using an XGI-8 Gas Anethesia System. Images can be analyzed to localize and quantify the signal source, which represents the bacterial infection site(s) and number, respectively. After imaging, CFU determination is carried out on homogenized tissue to confirm the presence of bacteria. Several doses of bacteria are used to correlate bacterial numbers with luminescence. Imaging can be applied to study of pathogenesis and evaluation of the efficacy of antibacterial compounds and vaccines.
机译:成像是一种有价值的技术,可用于监视生物过程。特别是,可以实时追踪活体动物 1-2 中癌细胞,干细胞,特定免疫细胞类型,病毒病原体,寄生虫和细菌的存在。与常规的动物模型感染分析策略 3-4 相比,将生物发光成像技术应用于病原体研究具有优势。随着时间的推移,可以在单个动物内看到感染,而无需安乐死来确定病原体的位置和数量。光学成像技术可以对所有组织和器官进行全面检查,而无需对以前已知被感染的部位进行采样。另外,在继续运送在整个实验中未成功接种的动物之前,可以直接确定接种到特定组织中的准确性。可以控制动物之间的变异性,因为成像可以单独跟踪每只动物。由于能够从多个时间点获取数据而无需取样组织来确定病原体负荷 3-4 ,因此成像具有显着减少所需动物数量的潜力。该协议介绍了可视化活体感染的方法动物使用生物发光成像技术表达荧光素酶的细菌重组菌株。 be虫(CBRLuc)和萤火虫荧光素酶(FFluc)利用荧光素作为底物 5-6 。 CBRluc和FFluc产生的光具有从500 nm到700 nm的宽波长,使这些荧光素酶成为活体动物模型 7-9 的光学成像的极佳报道分子。这主要是因为需要大于600 nm的光波长来避免被血红蛋白吸收,从而有效地穿过哺乳动物组织。萤光素酶被遗传地引入细菌中以产生光信号 10 。气管内向小鼠肺内接种生物发光细菌,以便实时监测感染情况。荧光素注射后,使用IVIS成像系统采集图像。在成像过程中,使用XGI-8气体麻醉系统将异氟烷麻醉小鼠。可以分析图像以定位和量化信号源,该信号源分别代表细菌感染部位和数量。成像后,对均质化的组织进行CFU测定,以确认细菌的存在。数个剂量的细菌用于使细菌数量与发光相关。影像学可用于研究发病机理以及评估抗菌化合物和疫苗的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号