首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Activity Recognition Using Community Data to Complement Small Amounts of Labeled Instances
【2h】

Activity Recognition Using Community Data to Complement Small Amounts of Labeled Instances

机译:使用社区数据补充少量带标签实例的活动识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Human Activity Recognition (HAR) is an important part of ambient intelligence systems since it can provide user-context information, thus allowing a greater personalization of services. One of the problems with HAR systems is that the labeling process for the training data is costly, which has hindered its practical application. A common approach is to train a general model with the aggregated data from all users. The problem is that for a new target user, this model can perform poorly because it is biased towards the majority type of users and does not take into account the particular characteristics of the target user. To overcome this limitation, a user-dependent model can be trained with data only from the target user that will be optimal for this particular user; however, this requires a considerable amount of labeled data, which is cumbersome to obtain. In this work, we propose a method to build a personalized model for a given target user that does not require large amounts of labeled data. Our method uses data already labeled by a community of users to complement the scarce labeled data of the target user. Our results showed that the personalized model outperformed the general and the user-dependent models when labeled data is scarce.
机译:人类活动识别(HAR)是环境情报系统的重要组成部分,因为它可以提供用户上下文信息,从而可以实现更大的服务个性化。 HAR系统的问题之一是训练数据的标记过程昂贵,这阻碍了其实际应用。一种通用方法是使用来自所有用户的汇总数据来训练通用模型。问题在于,对于新的目标用户而言,此模型的性能可能很差,因为它偏向大多数类型的用户,并且没有考虑目标用户的特定特征。为了克服此限制,可以仅使用目标用户的数据来训练用户依赖模型,该数据对于该特定用户而言将是最佳选择。但是,这需要相当数量的标记数据,这很麻烦。在这项工作中,我们提出了一种为给定目标用户构建个性化模型的方法,该模型不需要大量的标记数据。我们的方法使用已经由用户社区标记的数据来补充目标用户稀缺的标记数据。我们的结果表明,在缺少标签数据的情况下,个性化模型优于常规模型和依赖用户的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号