首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Handling Real-World Context Awareness Uncertainty and Vagueness in Real-Time Human Activity Tracking and Recognition with a Fuzzy Ontology-Based Hybrid Method
【2h】

Handling Real-World Context Awareness Uncertainty and Vagueness in Real-Time Human Activity Tracking and Recognition with a Fuzzy Ontology-Based Hybrid Method

机译:基于模糊本体的混合方法在实时人类活动跟踪与识别中处理现实环境中的意识不确定性和模糊性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Human activity recognition is a key task in ambient intelligence applications to achieve proper ambient assisted living. There has been remarkable progress in this domain, but some challenges still remain to obtain robust methods. Our goal in this work is to provide a system that allows the modeling and recognition of a set of complex activities in real life scenarios involving interaction with the environment. The proposed framework is a hybrid model that comprises two main modules: a low level sub-activity recognizer, based on data-driven methods, and a high-level activity recognizer, implemented with a fuzzy ontology to include the semantic interpretation of actions performed by users. The fuzzy ontology is fed by the sub-activities recognized by the low level data-driven component and provides fuzzy ontological reasoning to recognize both the activities and their influence in the environment with semantics. An additional benefit of the approach is the ability to handle vagueness and uncertainty in the knowledge-based module, which substantially outperforms the treatment of incomplete and/or imprecise data with respect to classic crisp ontologies. We validate these advantages with the public CAD-120 dataset (Cornell Activity Dataset), achieving an accuracy of 90.1% and 91.07% for low-level and high-level activities, respectively. This entails an improvement over fully data-driven or ontology-based approaches.
机译:人类活动识别是环境情报应用中实现适当的环境辅助生活的一项关键任务。在这一领域已经取得了显着进展,但是要获得可靠的方法仍然存在一些挑战。我们在这项工作中的目标是提供一个系统,该系统可以在涉及环境的交互的现实生活场景中对一组复杂的活动进行建模和识别。所提出的框架是一个混合模型,包括两个主要模块:基于数据驱动方法的低级子活动识别器,以及使用模糊本体实现的高级活动识别器,以包括对执行的动作的语义解释用户。模糊本体由低级数据驱动的组件所识别的子活动提供,并提供模糊本体论推理以使用语义识别活动及其在环境中的影响。该方法的另一个好处是能够处理基于知识的模块中的模糊性和不确定性,相对于传统的清晰本体而言,该性能大大优于对不完整和/或不精确数据的处理。我们使用公共CAD-120数据集(康奈尔活动数据集)验证了这些优势,对于低级和高级活动,其准确性分别达到90.1%和91.07%。这需要对完全数据驱动或基于本体的方法进行改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号