首页> 美国卫生研究院文献>Science Advances >Sedimentary sulfur isotopes and Neoarchean ocean oxygenation
【2h】

Sedimentary sulfur isotopes and Neoarchean ocean oxygenation

机译:沉积物中的硫同位素和新古海洋

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abrupt disappearance of mass-independent fractionation of sulfur isotopes (MIF-S) from the geologic record and an apparent ingrowth in seawater sulfate around 2.45 billion years ago (Ga) signal the first large-scale oxygenation of the atmosphere [the Great Oxygenation Event (GOE)]. Pre-GOE O2 production is evident from multiple other terrestrial and marine proxies, but oceanic O2 concentrations remain poorly constrained. Furthermore, current interpretations of S isotope records do not explain a concurrent expansion in the range of both MIF-S—diagnostic for low atmospheric O2—and δ34S beginning at 2.7 Ga. To address these unknowns, we developed a reaction-transport model to analyze the preservation patterns of sulfur isotopes in Archean sedimentary pyrites, one of the most robust and widely distributed proxies for early Earth biogeochemistry. Our modeling, paradoxically, reveals that micromolar levels of O2 in seawater enhance the preservation of large MIF-S signals, whereas concomitant ingrowth of sulfate expands the ranges in pyrite δ34S. The 2.7- to 2.45-Ga expansion in both Δ33S and δ34S ranges thus argues for a widespread and protracted oxygenation of seawater, at least in shallow marine environments. At the micromolar levels predicted, the surface oceans would support a strong flux of O2 to the atmosphere, where O2 sinks balanced these fluxes until the GOE. This microoxic seawater would have provided habitat for early aerobic microorganisms and supported a diversity of new O2-driven biogeochemical cycles in the Neoarchean.
机译:地质记录中质量无关的硫同位素分馏(MIF-S)突然消失,以及大约24.5亿年前(Ga)的海水硫酸盐明显向内生长,这标志着大气第一次大规模氧化[大氧事件( GOE)]。 GOE之前的O2的生产可以从其他多种陆地和海洋代理中明显看出,但是海洋O2的浓度仍然受到限制。此外,目前对S同位素记录的解释并不能解释MIF-S(可诊断为低气压O2)和δ 34 S从2.7 Ga开始的同时扩展。为解决这些未知数,我们开发了一种反应运输模型,以分析太古代沉积黄铁矿中硫同位素的保存方式,这是早期地球生物地球化学中最可靠且分布最广泛的代理之一。矛盾的是,我们的模型表明,海水中的微摩尔O2增强了大MIF-S信号的保存,而硫酸盐的向内生长扩大了黄铁矿δ 34 S的范围。因此,至少在浅海环境中,Δ 33 S和δ 34 S范围内的2.7-2.45-Ga膨胀都表明海水有广泛而持久的氧合作用。以预测的微摩尔水平,表层海洋将支持向大气中强烈的O2通量,在此O2的沉入平衡了这些通量,直到GOE。这种微含氧的海水将为早期的需氧微生物提供栖息地,并支持新纪元时期新的由O2驱动的生物地球化学循环。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号