首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Probing vasoocclusion phenomena in sickle cell anemia via mesoscopic simulations
【2h】

Probing vasoocclusion phenomena in sickle cell anemia via mesoscopic simulations

机译:通过介观模拟探索镰状细胞性贫血中的血管闭塞现象

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Vasoocclusion crisis is a key hallmark of sickle cell anemia. Although early studies suggest that this crisis is caused by blockage of a single elongated cell, recent experiments have revealed that vasoocclusion is a complex process triggered by adhesive interactions among different cell groups in multiple stages. However, the quantification of the biophysical characteristics of sickle cell anemia remains an open issue. Based on dissipative particle dynamics, we develop a multiscale model for the sickle red blood cells (SS-RBCs), accounting for diversity in both shapes and cell rigidities, to investigate the precise mechanism of vasoocclusion. First, we investigate the adhesive dynamics of a single SS-RBC in shear flow and static conditions, and find that the different cell groups (SS2: young-deformable SS-RBCs, ISCs: rigid-irreversible SS-RBCs) exhibit heterogeneous adhesive behavior due to the diverse cell morphologies and membrane rigidities. We quantify the observed adhesion behavior (in static conditions) in terms of a balance of free energies due to cell adhesion and deformation, and propose a power law that relates the free-energy increase as a function of the contact area. We further simulate postcapillary flow of SS-RBC suspensions with different cell fractions. The more adhesive SS2 cells interact with the vascular endothelium and trap ISC cells, resulting in vasoocclusion in vessels less than depending on the hematocrit. Under inflammation, adherent leukocytes may also trap ISC cells, resulting in vasoocclusion in even larger vessels.
机译:血管阻塞危机是镰状细胞性贫血的关键标志。尽管早期研究表明,这种危机是由单个细长细胞的阻塞引起的,但最近的实验表明,血管闭塞是由多个阶段中不同细胞组之间的粘附相互作用触发的复杂过程。但是,镰状细胞性贫血的生物物理特征的量化仍然是一个未解决的问题。基于耗散的粒子动力学,我们开发了镰状红细胞(SS-RBCs)的多尺度模型,考虑了形状和细胞刚性的多样性,以研究血管闭塞的精确机制。首先,我们研究了单个SS-RBC在剪切流和静态条件下的黏附动力学,发现不同的细胞组(SS2:年轻可变形的SS-RBC,ISC:不可逆刚性SS-RBC)表现出不同的黏附行为由于细胞形态和膜的刚性不同。我们根据由于细胞粘附和变形而产生的自由能的平衡,对观察到的粘附行为(在静态条件下)进行量化,并提出了一种幂律,该幂律将自由能的增加与接触面积的函数联系起来。我们进一步模拟具有不同细胞分数的SS-RBC悬浮液的毛细血管后流动。粘附性更高的SS2细胞与血管内皮相互作用并捕获ISC细胞,导致血管中的血管闭塞现象少于血细胞比容。在炎症下,粘附的白细胞也可能捕获ISC细胞,从而导致更大血管中的血管闭塞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号