首页> 美国卫生研究院文献>Nanomaterials >Prediction of Gold Nanoparticle and Microwave-Induced Hyperthermia Effects on Tumor Control via a Simulation Approach
【2h】

Prediction of Gold Nanoparticle and Microwave-Induced Hyperthermia Effects on Tumor Control via a Simulation Approach

机译:通过模拟方法预测金纳米颗粒和微波诱导的热疗对肿瘤控制的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hyperthermia acts as a powerful adjuvant to radiation therapy and chemotherapy. Recent advances show that gold nanoparticles (Au-NPs) can mediate highly localized thermal effects upon interaction with laser radiation. The purpose of the present study was to investigate via in silico simulations the mechanisms of Au-NPs and microwave-induced hyperthermia, in correlation to predictions of tumor control (biological endpoints: tumor shrinkage and cell death) after hyperthermia treatment. We also study in detail the dependence of the size, shape and structure of the gold nanoparticles on their absorption efficiency, and provide general guidelines on how one could modify the absorption spectrum of the nanoparticles in order to meet the needs of specific applications. We calculated the hyperthermia effect using two types of Au-NPs and two types of spherical tumors (prostate and melanoma) with a radius of 3 mm. The plasmon peak for the 30 nm Si-core Au-coated NPs and the 20 nm Au-NPs was found at 590 nm and 540 nm, respectively. Considering the plasmon peaks and the distribution of NPs in the tumor tissue, the induced thermal profile was estimated for different intervals of time. Predictions of hyperthermic cell death were performed by adopting a three-state mathematical model, where “three-state” includes (i) alive, (ii) vulnerable, and (iii) dead states of the cell, and it was coupled with a tumor growth model. Our proposed methodology and preliminary results could be considered as a proof-of-principle for the significance of simulating accurately the hyperthermia-based tumor control involving the immune system. We also propose a method for the optimization of treatment by overcoming thermoresistance by biological means and specifically through the targeting of the heat shock protein 90 (HSP90), which plays a critical role in the thermotolerance of cells and tissues.
机译:热疗是放疗和化疗的有力佐剂。最新进展表明,金纳米颗粒(Au-NPs)在与激光辐射相互作用时可以介导高度局部的热效应。本研究的目的是通过计算机模拟研究Au-NPs和微波诱导的高热的机制,与热疗后肿瘤控制的预测(生物学终点:肿瘤缩小和细胞死亡)相关。我们还详细研究了金纳米颗粒的大小,形状和结构对其吸收效率的依赖性,并就如何修改纳米颗粒的吸收光谱以满足特定应用的需求提供了一般指导。我们使用两种类型的Au-NP和半径为3 mm的两种球形肿瘤(前列腺癌和黑色素瘤)计算了热疗效果。 30 nm Si核金包被的NPs和20 nm Au-NPs的等离激元峰分别在590 nm和540 nm处发现。考虑到等离子体激元峰和NPs在肿瘤组织中的分布,在不同的时间间隔内估计诱导的热分布。通过采用三态数学模型进行高温细胞死亡的预测,其中“三态”包括(i)细胞的存活,(ii)脆弱状态和(iii)死亡状态,并与肿瘤结合增长模型。我们提出的方法和初步结果可被视为原理的证明,因为它可以准确地模拟涉及免疫系统的基于热疗的肿瘤控制。我们还提出了一种通过生物学手段克服热阻,特别是通过靶向热激蛋白90(HSP90)来优化治疗的方法,该热激蛋白90在细胞和组织的耐热性中起着关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号